matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRingisomorphismus, endl.Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Ringisomorphismus, endl.Körper
Ringisomorphismus, endl.Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringisomorphismus, endl.Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Sa 08.10.2016
Autor: impliziteFunktion

Aufgabe
Es sei $p$ eine Primzahl und betrachte den Ringisomorphismus

[mm] $\tau:\mathbb{F}_p[X]\to\mathbb{F}_p[X] [/mm]

gegeben durch [mm] $\tau(X)=X+1$. [/mm] Wir setzen [mm] $g:=X^p-X-1\in\mathbb{F}_p[X]$ [/mm]

a) Man zeige, dass [mm] $\tau^p(f)=f$ [/mm] gilt für alle [mm] $f\in\mathbb{F}_p[X]$. [/mm]

b) Man zeige, dass $g$ von [mm] $\tau$ [/mm] fixiert wird, d.h. [mm] $\tau(g)=g$. [/mm]

c) Man zeige, dass [mm] $\tau(h)\neq [/mm] h$ gilt für alle [mm] $h\in\mathbb{F}_p[X]$ [/mm] mit $deg(h)<p$.

d) Man zeige, dass [mm] $g\in\mathbb{F}_p[X]$ [/mm] irreduzibel ist.

Hallo,

ich habe eine Frage zu dieser Aufgabe. Insbesondere zum Aufgabenteil c).

zu a):

Sei [mm] $f\in\mathbb{F}_p[X]$ [/mm] beliebig, dann ist

[mm] $f=\sum_{i=0}^n a_iX^i$, [/mm] da [mm] $\tau$ [/mm] ein Ringhomomorphismus ist, gilt

[mm] $\tau^p(f)=\sum_{i=0}^n a_i\tau^p(X)^i=\sum_{i=0}^n a_i(X+p)^i [/mm]

Wegen p=0 in [mm] $\mathbb{F}_p$ [/mm] also

[mm] $\sum_{i=0}^n a_iX^i=f$ [/mm]

zu b):

[mm] $\tau(X^p-X-1)=\tau(X)^p-\tau(X)-1=(X+1)^p-(X+1)-1=X^p+1-X-1-1=X^p-X-1=g$ [/mm]

zu c):

Jeder meiner Ansätze hat soweit nicht funktioniert. Ich habe versucht allgemein [mm] $h=\sum_{i=0}^{p-1} a_i X^i$ [/mm] zu betrachten, und dann einfach "ausrechnen", womit ich nicht weiter kam.

Auch ein Ansatz mittels Widerspruch und Verwendung von Eigenschaft a), hat kein Ergebnis gebracht.
Habt ihr eine bessere Idee, oder einen Tipp?

zu d):

Angenommen [mm] $g\in F_p[X]$ [/mm] ist reduzibel. Dann ist $g=fh$, mit [mm] $f,h\in\mathbb{F}_p[X]$ [/mm] und $deg(f)<p$, sowie $deg(h)<p$.

Nach Eigenschaft b), gilt

[mm] $\tau(g)=\tau(fh)=\tau(f)\tau(h)=g$ [/mm]

Wegen Eigenschaft c), ist [mm] $\tau(f)\neq [/mm] f$ und [mm] $\tau(h)\neq [/mm] h$.
Da aber [mm] \tau(f)\tau(h)=g, [/mm] muss [mm] $\tau(f)=h$ [/mm] und [mm] $\tau(h)=f$. [/mm]
Dann ist [mm] $\deg(f)=\deg(h)=a$ [/mm] und [mm] $p=\deg(g)=\deg(f)+\deg(h)=2a$. [/mm]

Wegen p prim, ist a=1, also $p=2$.

Dann ist [mm] $g=X^2-X-1\in\mathbb{F}_2[X]$. [/mm]
Aber $g$ hat keine Nullstellen in [mm] $\mathbb{F}_2$, [/mm] im Widerspruch zur Annahme, dass $g$ reduzibel ist.


Sind a), b) und d) so in Ordnung?
Habt ihr einen Tipp zu Aufgabenteil c)?

Vielen Dank im voraus.

        
Bezug
Ringisomorphismus, endl.Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Sa 08.10.2016
Autor: hippias


> Es sei [mm]p[/mm] eine Primzahl und betrachte den Ringisomorphismus
>  
> [mm]$\tau:\mathbb{F}_p[X]\to\mathbb{F}_p[X][/mm]
>  
> gegeben durch [mm]\tau(X)=X+1[/mm]. Wir setzen
> [mm]g:=X^p-X-1\in\mathbb{F}_p[X][/mm]
>  
> a) Man zeige, dass [mm]\tau^p(f)=f[/mm] gilt für alle
> [mm]f\in\mathbb{F}_p[X][/mm].
>  
> b) Man zeige, dass [mm]g[/mm] von [mm]\tau[/mm] fixiert wird, d.h.
> [mm]\tau(g)=g[/mm].
>  
> c) Man zeige, dass [mm]\tau(h)\neq h[/mm] gilt für alle
> [mm]h\in\mathbb{F}_p[X][/mm] mit [mm]deg(h)
>  
> d) Man zeige, dass [mm]g\in\mathbb{F}_p[X][/mm] irreduzibel ist.
>  Hallo,
>  
> ich habe eine Frage zu dieser Aufgabe. Insbesondere zum
> Aufgabenteil c).
>  
> zu a):
>  
> Sei [mm]f\in\mathbb{F}_p[X][/mm] beliebig, dann ist
>
> [mm]f=\sum_{i=0}^n a_iX^i[/mm], da [mm]\tau[/mm] ein Ringhomomorphismus ist,
> gilt
>  
> [mm]$\tau^p(f)=\sum_{i=0}^n a_i\tau^p(X)^i=\sum_{i=0}^n a_i(X+p)^i[/mm]
>  
> Wegen p=0 in [mm]\mathbb{F}_p[/mm] also
>  
> [mm]\sum_{i=0}^n a_iX^i=f[/mm]

O.K.

>  
> zu b):
>  
> [mm]\tau(X^p-X-1)=\tau(X)^p-\tau(X)-1=(X+1)^p-(X+1)-1=X^p+1-X-1-1=X^p-X-1=g[/mm]
>  

O.K.

> zu c):
>  
> Jeder meiner Ansätze hat soweit nicht funktioniert. Ich
> habe versucht allgemein [mm]h=\sum_{i=0}^{p-1} a_i X^i[/mm] zu
> betrachten, und dann einfach "ausrechnen", womit ich nicht
> weiter kam.
>  
> Auch ein Ansatz mittels Widerspruch und Verwendung von
> Eigenschaft a), hat kein Ergebnis gebracht.
>  Habt ihr eine bessere Idee, oder einen Tipp?

Überlege Dir, dass $f$ eine konstante Funktion auf den Körper induziert, wenn $f$ unter [mm] $\tau$ [/mm] invariant ist;  im übrigen zeigt diese Überlegung auch, dass die Behauptung wie angegeben nicht richtig ist, denn die Polynome vom Grad $=0$ sind Fixpunkte von [mm] $\tau$. [/mm]

>  
> zu d):
>  
> Angenommen [mm]g\in F_p[X][/mm] ist reduzibel. Dann ist [mm]g=fh[/mm], mit
> [mm]f,h\in\mathbb{F}_p[X][/mm] und [mm]deg(f)
>  
> Nach Eigenschaft b), gilt
>
> [mm]\tau(g)=\tau(fh)=\tau(f)\tau(h)=g[/mm]
>  
> Wegen Eigenschaft c), ist [mm]\tau(f)\neq f[/mm] und [mm]\tau(h)\neq h[/mm].
>  
> Da aber [mm]\tau(f)\tau(h)=g,[/mm] muss [mm]\tau(f)=h[/mm] und [mm]\tau(h)=f[/mm].

Dieser Schluss voreilig, denn $g$ könnte sich auf viele Arten faktorisieren lassen. Da müssen die Faktoren schon  mit etwas mehr Fingespitzengefühl gewählt werden.


>  Dann ist [mm]\deg(f)=\deg(h)=a[/mm] und
> [mm]p=\deg(g)=\deg(f)+\deg(h)=2a[/mm].
>  
> Wegen p prim, ist a=1, also [mm]p=2[/mm].
>  
> Dann ist [mm]g=X^2-X-1\in\mathbb{F}_2[X][/mm].
>  Aber [mm]g[/mm] hat keine Nullstellen in [mm]\mathbb{F}_2[/mm], im
> Widerspruch zur Annahme, dass [mm]g[/mm] reduzibel ist.
>  
>
> Sind a), b) und d) so in Ordnung?
>  Habt ihr einen Tipp zu Aufgabenteil c)?
>  
> Vielen Dank im voraus.


Bezug
                
Bezug
Ringisomorphismus, endl.Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 08.10.2016
Autor: impliziteFunktion


> Dieser Schluss voreilig, denn g könnte sich auf viele Arten faktorisieren lassen. Da müssen die Faktoren schon  mit etwas mehr Fingespitzengefühl gewählt werden.

$g=fh$, wobei $deg(f)<p$ maximal sein soll. Dadurch ist $f$ eindeutig bestimmt. Denn wenn es weitere Polynome mit gleichen Grad gibt, könnte man sie einfach miteinander multiplizieren und erhält so das Polynom mit maximalen Grad.
Wegen [mm] $deg(f)=deg(\tau(f))$ [/mm] und [mm] $\tau(f)\neq [/mm] f$ gibt es einen Widerspruch zur Eindeutigkeit.

> Überlege Dir, dass f eine konstante Funktion auf den Körper induziert, wenn f unter $ [mm] \tau [/mm] $ invariant ist

Ich soll also überlegen, wass passiert, wenn [mm] $\tau(f)=f$ [/mm] gilt.

Mit [mm] $f=\sum_{i=0}^{p-1}a_iX^i$ [/mm] und

[mm] \tau(f)=f, [/mm] also

[mm] $\sum_{i=0}^{p-1}a_iX^i=\sum_{i=0}^{p-1}a_i\tau(X)^i$, [/mm] womit

[mm] $\sum_{i=0}^{p-1}a_i(X^i-\tau(X)^i)=0$ [/mm]

[mm] $\sum_{i=0}^{p-1}a_i(X^i-(X+1)^i)=0$ [/mm]

Wenn [mm] $a_j=0$ [/mm] für alle [mm] $j\geq [/mm] 0$ ist die Aussage auf jeden Fall erfüllt.
Ebenso wenn [mm] $a_j=0$ [/mm] für alle $j>0$. Dann ist $f$ konstant.

Wenn man ansonsten die Indexmenge $I$ aller Indizes [mm] $\{0,\dotso, p-1\}$ [/mm] ansieht, für die [mm] $a_j\neq [/mm] 0$, so kann man sich den größten solchen Index auswählen.
Dieser Summand würde sich jedoch nicht mit den restlichen "annulieren", weshalb die Summe dann nicht Null wäre.

Das konnte ich bisher aber nicht zeigen.

Bezug
                        
Bezug
Ringisomorphismus, endl.Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 So 09.10.2016
Autor: hippias


> > Dieser Schluss voreilig, denn g könnte sich auf viele
> Arten faktorisieren lassen. Da müssen die Faktoren schon  
> mit etwas mehr Fingespitzengefühl gewählt werden.
>
> [mm]g=fh[/mm], wobei [mm]deg(f)
> eindeutig bestimmt. Denn wenn es weitere Polynome mit
> gleichen Grad gibt, könnte man sie einfach miteinander
> multiplizieren und erhält so das Polynom mit maximalen
> Grad.

Das sehe ich nicht. Sei $n= [mm] \max\{\deg(f)|f|g, \deg(f)<\deg(g)\}$. [/mm] Wenn $a,b$ echte Teiler von $g$ sind mit [mm] $\deg(a)= \deg(b)= [/mm] n$, so ist zwar [mm] $\deg(ab)>n$, [/mm] aber $ab$ muss kein Teiler von $g$ sein.

>  Wegen [mm]deg(f)=deg(\tau(f))[/mm] und [mm]\tau(f)\neq f[/mm] gibt es einen
> Widerspruch zur Eindeutigkeit.
>  
> > Überlege Dir, dass f eine konstante Funktion auf den
> Körper induziert, wenn f unter [mm]\tau[/mm] invariant ist
>  
> Ich soll also überlegen, wass passiert, wenn [mm]\tau(f)=f[/mm]
> gilt.
>  
> Mit [mm]f=\sum_{i=0}^{p-1}a_iX^i[/mm] und
>
> [mm]\tau(f)=f,[/mm] also
>  
> [mm]\sum_{i=0}^{p-1}a_iX^i=\sum_{i=0}^{p-1}a_i\tau(X)^i[/mm], womit
>  
> [mm]\sum_{i=0}^{p-1}a_i(X^i-\tau(X)^i)=0[/mm]
>  
> [mm]\sum_{i=0}^{p-1}a_i(X^i-(X+1)^i)=0[/mm]
>  
> Wenn [mm]a_j=0[/mm] für alle [mm]j\geq 0[/mm] ist die Aussage auf jeden Fall
> erfüllt.
>  Ebenso wenn [mm]a_j=0[/mm] für alle [mm]j>0[/mm]. Dann ist [mm]f[/mm] konstant.
>  
> Wenn man ansonsten die Indexmenge [mm]I[/mm] aller Indizes
> [mm]\{0,\dotso, p-1\}[/mm] ansieht, für die [mm]a_j\neq 0[/mm], so kann man
> sich den größten solchen Index auswählen.
>  Dieser Summand würde sich jedoch nicht mit den restlichen
> "annulieren", weshalb die Summe dann nicht Null wäre.
>  
> Das konnte ich bisher aber nicht zeigen.

Und das ist natürlich der interessante Fall. Du hast wieder versäumt im obigen Term die Klammer aufzulösen. Sonst überlege Dir, wie ganz allgemein die von [mm] $\tau(f)$ [/mm] auf $K$ induzierten Funktion mit der von $f$ auf $K$ induzierten Funktion zusammenhängt.

Bezug
                                
Bezug
Ringisomorphismus, endl.Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 So 09.10.2016
Autor: impliziteFunktion


> Wenn $ a,b $ echte Teiler von $ g $ sind mit $ [mm] \deg(a)= \deg(b)= [/mm] n $, so ist zwar $ [mm] \deg(ab)>n [/mm] $, aber $ ab $ muss kein Teiler von $ g $ sein.

Ich sehe nur triviale Gegenbeispiele, wo das gebildete Produkt nicht mehr in der eindeutigen Primfaktorzerlegung des Polynoms $g$ liegt.

Etwa wenn $f=ab$ ist, und $a,b$ sind irreduzibel. Mit [mm] $deg(a)\geq [/mm] deg(b)$.
Dann könnte man [mm] $deg(a^2)$ [/mm] bilden, was kein Teiler mehr wäre.

Unter strengeren Voraussetzungen müsste es doch gelten, also wenn man solche Fälle ausschließt.

> Du hast wieder versäumt im obigen Term die Klammer aufzulösen. Sonst überlege Dir, wie ganz allgemein die von $ [mm] \tau(f) [/mm] $ auf $ K $ induzierten Funktion mit der von $ f $ auf $ K $ induzierten Funktion zusammenhängt.

Ich habe das getan, dann annuliert sich das [mm] $X^i$, [/mm] aber ich habe nicht gesehen in wie weit es mir das für die Rechnung hilft.

Bezug
                                        
Bezug
Ringisomorphismus, endl.Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:36 Di 11.10.2016
Autor: UniversellesObjekt

Welche Fragen sind hier noch offen?

Liebe Grüße,
UniversellesObjekt

Bezug
                                        
Bezug
Ringisomorphismus, endl.Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Di 11.10.2016
Autor: UniversellesObjekt

Ich geb vielleicht nochmal etwas input. a) und b) scheinen ja gelöst zu sein. c) Wie hippias gesagt hat, folgt aus [mm] $\tau(f)=f$, [/mm] dass $f$ die konstante Funktion definiert. Um das einzusehen, setze in die Gleichung $f(X)=f(X+1)$ einfach mal $X=0$ ein. Und dann vielleicht noch $X=1$. Und $X=2$. Um nun einzusehen, dass Polynome vom Grad $<p$ nur dann konstante Funktionen definieren können, wenn sie selbst konstant sind, denke mal an die Eindeutigkeit des Interpolationspolynoms.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]