matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRingisomorphie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Ringisomorphie
Ringisomorphie < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringisomorphie: Beweis
Status: (Frage) beantwortet Status 
Datum: 22:34 So 22.02.2009
Autor: slash

Aufgabe
Beweisen Sie, dass der Ring R isomorph ist zum Ring S aller zweireihigen quadratischen Matrizen [mm] \pmat{ a & -2b \\ b & a } [/mm] mit a, b [mm] \in \IZ. [/mm]

R := {a + [mm] b\wurzel[2]{-2} [/mm] | a, b [mm] \in \IZ [/mm]  }

Keine Ahnung wie.

Hab schon raus, dass die Norm in R gleich der Determinanten in S ist.
Aber ansonsten k.A., wie ich da eine Isomorphie zeigen kann.

Danke, slash.

        
Bezug
Ringisomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Mo 23.02.2009
Autor: pelzig

Die Aufgabe ist doch sehr suggestiv gestellt, der Isomorphismus wird ja sozusagen gleich mitgeliefert: [mm] $$\Phi:R\ni(a+b\sqrt{-2})\mapsto\pmat{a&-2b\\b&a}\in [/mm] S$$ Zeige, dass dies ein Homomorphismus von Ringen ist, der injektiv und surjektiv ist.

Gruß, Robert

Bezug
                
Bezug
Ringisomorphie: Ist klar ...
Status: (Frage) beantwortet Status 
Datum: 06:36 Mo 23.02.2009
Autor: slash

... man macht's ja nicht zum ersten Mal. :)

Aber wie sieht denn Phi konkret aus, um die notwendigen Bedingungen für einen Ringhomomorphismus zu erfüllen?
Wie baue ich die Gleichheit von Norm in R und Determinante in S ein?

Das ist erstmal mein Problem.
Die Bijektivität wird sich daraus dann schon zeigen lassen.
Der Anfang hängt gewissermaßen.

Danke.

Bezug
                        
Bezug
Ringisomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Mo 23.02.2009
Autor: pelzig

Ich hab dir doch ganz konkret hingeschrieben was [mm] $\Phi$ [/mm] macht. Mit Determinante und Norm hat das überhaupt gar nix zu tun! Du musst zeigen, dass [mm] $\Phi$ [/mm] ein Ringhomomorphismus ist, d.h.

1) [mm] $\Phi(a+b)=\Phi(a)+\Phi(b)$ [/mm] und
2) [mm] $\Phi(ab)=\Phi(a)\Phi(b)$ [/mm]

für alle [mm] $a,b\in [/mm] R$. Wenn du das hast, zeige dass [mm] $\Phi$ [/mm] außerdem injektiv und surjektiv ist...

Gruß, Robert

Bezug
                                
Bezug
Ringisomorphie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:07 Mo 23.02.2009
Autor: slash

k ... hab ich.
Injektivität bekomme ich über den Kern des Homomorphismus hin.
Surjektivität hängt.

Danke.


Bezug
                                        
Bezug
Ringisomorphie: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Mo 23.02.2009
Autor: fred97


> k ... hab ich.
>  Injektivität bekomme ich über den Kern des Homomorphismus
> hin.
>  Surjektivität hängt.

Komisch !


Sei A =  $ [mm] \pmat{ a & -2b \\ b & a } [/mm] $ aus S gegeben

Setze x = [mm] a+b\wurzel{-2}. [/mm] Dann: x [mm] \in [/mm] R und  [mm] \Phi(x) [/mm] = A


FRED

>  
> Danke.
>  


Bezug
                                                
Bezug
Ringisomorphie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Mo 23.02.2009
Autor: slash

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]