matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRinghomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Ringhomomorphismus
Ringhomomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringhomomorphismus: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:52 Sa 16.04.2011
Autor: julmarie

Aufgabe
Seien R,S, T Ringe, f: R [mm] \to [/mm] S bzw. g: S [mm] \to [/mm] T Ringhomomorphismen und [mm] \delta [/mm] : [mm] R\to [/mm] S ein Ringhomomorphismus. Zeigen sie dass die folgenden Abbgildungen  ebenfalls Ringhomomorphismen sind:
a) id: R [mm] \to [/mm] R
b) [mm] \beta [/mm] := g [mm] \circ [/mm] f : R [mm] \to [/mm] T
c) [mm] \delta^{-1} [/mm] : S [mm] \to [/mm] R

ich habe leider Probleme mir der aufgabe b) da weiß ich nicht recht wie ich mit der verküpfung umgehen soll... kann mir da jemand helfen?

bei uns wird jetzt stark auf  die Form geachtet, deswegen meine Frage, könnte jemand meine Antwort sowohl auf Richtigkeit als auch auf Form überprüfen ?

also meine Antworten:

a) i)  id(1) = 1 , gilt denn eins geht auf eins
   ii)  id (xy) = xy = id (x) id(y)
   iii)   id (x+y) = x+y = id (x) + id (y)

Somit gilt, dass a) ein ringhomomorphismus ist

b)  ???? vielleicht kann mir ja jemand einen Tipp geben.,,
  
c)i)  [mm] \delta^{-1} [/mm] = [mm] \delta^{-1} (\delta [/mm] (1)) = 1
  ii) [mm] \delta^{-1} [/mm] (xy) = [mm] \delta^{-1} [/mm] (x) * [mm] \delta^{-1} [/mm] (y)
[mm] \gdw \delta (\delta^{-1} [/mm] (xy)) [mm] =\delta (\delta^{-1} [/mm] (x) * [mm] \delta^{-1} [/mm] (y))
[mm] \gdw [/mm] xy= xy

iii) [mm] \delta^{-1} [/mm] (x+y) = [mm] \delta^{-1} [/mm] (x) + [mm] \delta^{-1} [/mm] (y)
[mm] \gdw \delta (\delta^{-1} [/mm] (x+y) [mm] =\delta (\delta [/mm] (-1) (x) + [mm] \delta^{-1} [/mm] (y))
[mm] \gdw \delta(\delta^{-1} [/mm] (x+y) [mm] =\delta(\delta^{-1} (x))+\delta(\delta^{-1} [/mm] (y))
[mm] \gdw [/mm] xy= xy

Vielen dank im voraus!

        
Bezug
Ringhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Sa 16.04.2011
Autor: Lippel

Hallo,

> Seien R,S, T Ringe, f: R [mm]\to[/mm] S bzw. g: S [mm]\to[/mm] T
> Ringhomomorphismen und [mm]\delta[/mm] : [mm]R\to[/mm] S ein
> Ringhomomorphismus. Zeigen sie dass die folgenden
> Abbgildungen  ebenfalls Ringhomomorphismen sind:
>  a) id: R [mm]\to[/mm] R
>  b) [mm]\beta[/mm] := g [mm]\circ[/mm] f : R [mm]\to[/mm] T
>  c) [mm]\delta^{-1}[/mm] : S [mm]\to[/mm] R

Sicher, dass $ [mm] \delta$ [/mm] nicht ein Isomorphismus sein muss, sonst gilt die Aussage c) nämlich im allgemeinen nicht, da eine Umkehrabbildung gar nicht wohldefiniert ist.

>  
> bei uns wird jetzt stark auf  die Form geachtet, deswegen
> meine Frage, könnte jemand meine Antwort sowohl auf
> Richtigkeit als auch auf Form überprüfen ?
>
> also meine Antworten:
>  
> a) i)  id(1) = 1 , gilt denn eins geht auf eins
>     ii)  id (xy) = xy = id (x) id(y)
>     iii)   id (x+y) = x+y = id (x) + id (y)
>  
> Somit gilt, dass a) ein ringhomomorphismus ist

Vollkommen korrekt.

> b)  ???? vielleicht kann mir ja jemand einen Tipp geben.,,

Seien $x,y  [mm] \in [/mm] R$:
(i) [mm](g \circ f)(1) = g(f(1)) = g(1) = 1 [/mm]
(ii) $(g [mm] \circ [/mm] f)(xy)=g(f(xy)) = g(f(x)f(y))=g(f(x))g(f(y))=(g [mm] \circ [/mm] f)(x)(g [mm] \circ [/mm] f)(y)$
(iii) analog
Du verwendest also einfach die Homomorphismeneigenschaften von f und g.


> c)

Ich gehe jetzt mal davon aus, dass [mm] $\delta$ [/mm] Ringisomorphismus ist.

i)  [mm]\delta^{-1}[/mm] = [mm]\delta^{-1} (\delta[/mm] (1)) = 1
Genau.

>    ii) [mm]\delta^{-1}(1)[/mm] (xy) = [mm]\delta^{-1}[/mm] (x) * [mm]\delta^{-1}[/mm]
> (y)
>  [mm]\gdw \delta (\delta^{-1}[/mm] (xy)) [mm]=\delta (\delta^{-1}[/mm] (x) *
> [mm]\delta^{-1}[/mm] (y))
>  [mm]\gdw[/mm] xy= xy

Ja.
  

> iii) [mm]\delta^{-1}[/mm] (x+y) = [mm]\delta^{-1}[/mm] (x) + [mm]\delta^{-1}[/mm] (y)
>  [mm]\gdw \delta (\delta^{-1}[/mm] (x+y) [mm]=\delta (\delta[/mm] (-1) (x) +
> [mm]\delta^{-1}[/mm] (y))
>  [mm]\gdw \delta(\delta^{-1}[/mm] (x+y) [mm]=\delta(\delta^{-1} (x))+\delta(\delta^{-1}[/mm]
> (y))
> [mm]\gdw[/mm] xy= xy

In der letzten Zeile muss es natürlich $x+y=x+y$ heißen.

LG Lippel

Bezug
                
Bezug
Ringhomomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Sa 16.04.2011
Autor: julmarie

danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]