matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRinghomomorphismus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Ringhomomorphismus
Ringhomomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringhomomorphismus: Finde den Ringhom
Status: (Frage) beantwortet Status 
Datum: 12:27 Mo 07.04.2014
Autor: Studiiiii

Aufgabe 1
Sei p eine Primzahl.
Gibt es einen Ringhomomorphismus:
[mm] $\phi [/mm] : [mm] \IZ [/mm] / [mm] p^2 \IZ [/mm] -> [mm] \IZ [/mm] / p [mm] \IZ$ [/mm] ?


Aufgabe 2
Sei p eine Primzahl.
Gibt es einen Ringhomomorphismus:
[mm] $\psi [/mm] : [mm] \IZ [/mm] / p [mm] \IZ [/mm] -> [mm] \IZ [/mm] / [mm] p^2 \IZ$ [/mm] ?


Hallo,

Ich habe zur obigen Aufgabe irgendwie keinen Ansatz. Ich weiß nicht genau, wonach ich suchen muss.

Wäre schön, wenn mir jmd. ein typisches Vorgehen erläutern würde, auch vllt. wenn 's ein allgemeinerer Fall wäre.

(Vorahnung:
1) Es gibt einen Ringhomomorphismus
2) Es gibt keinen Ringhomomorphismus
)

edit:
Habe gelesen, dass aus dem Homomorphiesatz wohl folgt, dass (in z.B. dem ersten Fall) p das [mm] p^2 [/mm] teilen muss, damit es einen Ringhom. gibt - mir ist nicht ganz klar, warum das aus dem Satz hervorgeht.
Liebe Grüße

        
Bezug
Ringhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Mo 07.04.2014
Autor: tobit09

Hallo Studiiiii!


> Sei p eine Primzahl.
>  Gibt es einen Ringhomomorphismus:
>  [mm]\phi : \IZ / p^2 \IZ -> \IZ / p \IZ[/mm] ?
>  
> Sei p eine Primzahl.
>  Gibt es einen Ringhomomorphismus:
>  [mm]\psi : \IZ / p \IZ -> \IZ / p^2 \IZ[/mm] ?


> (Vorahnung:
>  1) Es gibt einen Ringhomomorphismus
>  2) Es gibt keinen Ringhomomorphismus
>  )

[ok]


> edit:
>  Habe gelesen, dass aus dem Homomorphiesatz wohl folgt,
> dass (in z.B. dem ersten Fall) p das [mm]p^2[/mm] teilen muss, damit
> es einen Ringhom. gibt - mir ist nicht ganz klar, warum das
> aus dem Satz hervorgeht.

Der Homomorphiesatz liefert eine Methode, Ringhomomorphismen der Form

     [mm] $R/I\to [/mm] R'$

aus Ringhomomorphismen [mm] $R\to [/mm] R'$ zu konstruieren.

Wir suchen bei Aufgabe 1 einen Ringhomomorphismus [mm] $\IZ/p^2\IZ\to\IZ/p\IZ$. [/mm]
Um nun einen solchen Ringhomomorphismus durch den Homomorphiesatz geliefert zu bekommen, benötigen wir zunächst einen Ringhomomorphismus [mm] $\IZ\to\IZ/p\IZ$. [/mm]

Die kanonische Projektion

     [mm] $\pi\colon\IZ\to\IZ/p\IZ,\quad n\mapsto n+p\IZ$ [/mm]

ist ein solcher Ringhomomorphismus.

Wende nun den Homomorphiesatz auf [mm] $\pi$ [/mm] und das Ideal [mm] $p^2\IZ\subseteq\IZ$ [/mm] an.


Zu Aufgabe 2:

Angenommen es gibt einen Ringhomomorphismus [mm] $\psi\colon\IZ/p\IZ\to\IZ/p^2\IZ$. [/mm]

Wie müsste dann für

     [mm] $a:=0+p\IZ=p+p\IZ=\underbrace{(1+p\IZ)+(1+p\IZ)+\ldots+(1+p\IZ)}_{p\text{ Summanden }(1+p\IZ)}$ [/mm]

[mm] $\psi(a)$ [/mm] lauten?

Zum einen

    [mm] $\psi(a)=\psi(0+p\IZ)=\ldots$, [/mm]

zum anderen

    [mm] $\psi(a)=\psi(\underbrace{(1+p\IZ)+(1+p\IZ)+\ldots+(1+p\IZ)}_{p\text{ Summanden }(1+p\IZ)})=\ldots$ [/mm]

Leite daraus einen Widerspruch her.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]