matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraRinge, char p, Isomorphien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Ringe, char p, Isomorphien
Ringe, char p, Isomorphien < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ringe, char p, Isomorphien: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:43 Mo 21.08.2006
Autor: kathrine

Aufgabe
p Primzahl, R komm. Ring mit Einselt und |R|= [mm] p^2 [/mm]
dann folgt: [mm] R\cong\IZ/p^2\IZ [/mm] oder R Körper oder [mm] R\cong\IZ/p\IZ\otimes\IZ/p\IZ [/mm] oder [mm] R\cong(\IZ/p\IZ)[X]/(X^2) [/mm]

Hallo (Felix:-))
ich habe eine Lösung zu dieser Aufgabe mit folgendem Problem:
wir starten mit der abelschen Gruppe (R,+). ist diese zyklisch der Ordnung [mm] p^2, [/mm] dann fertig. ist diese nicht zyklisch, dann betrachten wir den Primkörper [mm] R_{1} [/mm] der char p.
dann können wir sagen [mm] R\cong\ R_{1}[a]\cong\IZ_{p}[a], [/mm] a nicht im Primkörper.
und jetzt der clou: warum folgt dann, dass [mm] R\cong\IZ_{p}[a]\cong\IZ_{p}[X]/(f) [/mm] für ein Polynom f vom grad 2. das kapier' ich gar nicht; danach ist es klar, wie es weitergeht.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Ringe, char p, Isomorphien: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Mo 21.08.2006
Autor: felixf

Hallo Kathrine! :-)

> p Primzahl, R komm. Ring mit Einselt und |R|= [mm]p^2[/mm]
>  dann folgt: [mm]R\cong\IZ/p^2\IZ[/mm] oder R Körper oder
> [mm]R\cong\IZ/p\IZ\otimes\IZ/p\IZ[/mm] oder
> [mm]R\cong(\IZ/p\IZ)[X]/(X^2)[/mm]
>  Hallo (Felix:-))
>  ich habe eine Lösung zu dieser Aufgabe mit folgendem
> Problem:
>  wir starten mit der abelschen Gruppe (R,+). ist diese
> zyklisch der Ordnung [mm]p^2,[/mm] dann fertig.

Genau, dann ist $R [mm] \cong \IZ/p^2\IZ$. [/mm] Eigentlich muesste man aber noch begruenden, warum [mm] $1_R$ [/mm] ein Erzeuger der additiven Gruppe ist.

> ist diese nicht
> zyklisch, dann betrachten wir den Primkörper [mm]R_{1}[/mm] der char
> p.
>  dann können wir sagen [mm]R\cong\ R_{1}[a]\cong\IZ_{p}[a],[/mm] a
> nicht im Primkörper.

Genau, allein schon wegen Lagrange: Die additive Untergruppe [mm] $\langle R_1, [/mm] a [mm] \rangle$ [/mm] von $R$ ist echt groesser als [mm] $R_1$, [/mm] muss also $R$ sein. Und [mm] $R_1[a]$ [/mm] enthaelt [mm] $\langle R_1, [/mm] a [mm] \rangle$. [/mm]

> und jetzt der clou: warum folgt dann, dass
> [mm]R\cong\IZ_{p}[a]\cong\IZ_{p}[X]/(f)[/mm] für ein Polynom f vom
> grad 2. das kapier' ich gar nicht; danach ist es klar, wie
> es weitergeht.

Nun, $R = [mm] R_1[a]$ [/mm] ist ja das Bild vom Einsetzungshomomorphismus [mm] $\Phi [/mm] : [mm] \IZ_p[x] \cong R_1[x] \to [/mm] R$, $x [mm] \mapsto [/mm] a$. Also ist nach dem Homomorphiesatz [mm] $\IZ_p[x] [/mm] / [mm] \ker\Phi \cong [/mm] Img [mm] \Phi [/mm] = R$. Nun ist [mm] $\IZ_p$ [/mm] ein Koerper und somit [mm] $\IZ_p[x]$ [/mm] ein Hauptidealbereich, womit [mm] $\ker\Phi [/mm] = (f)$ ist fuer ein normiertes Polynom $f [mm] \in \IZ_p[x]$ [/mm] (der Kern ist nicht-trivial, da $R$ endlich ist: andernfalls waere $R [mm] \cong \IZ_p[x]$ [/mm] unendlich).

Nun ist aber [mm] $p^2 [/mm] = |R| = [mm] |\IZ_p[x]/(f)| [/mm] = [mm] p^{\deg f}$, [/mm] womit [mm] $\deg [/mm] f = 2$ sein muss! :-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]