matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRing (R,+,*) sei kommutativ
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Ring (R,+,*) sei kommutativ
Ring (R,+,*) sei kommutativ < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ring (R,+,*) sei kommutativ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 So 11.11.2007
Autor: Steffi1988

Aufgabe:
Ring R(+,*) mit [mm] a,b\in\IR [/mm] und [mm] a^2 [/mm] = a
a.) Bew. Sie der Ring (R,+,*) ist kommutativ


Hallo zusammen,
Nun weiß ich aus der Deffinition: "R heißt kommutativer Ring, falls die Multiplikation zusätzlich kommutativ ist".

Heißt das für mich, ich muss erst zeigen (R,+) ist kommutativ und dann für (R,*) ?

Für (R,+) kriege ich es hin...

a +b = -a+a +a+b +b-b = -a(1+1)(a+b) -b = b+a

bei der Multipl. mit ab = ba habe ich keine Ahnung mehr :(

Hat jmd. einen Tip für mich?

Steffi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ring (R,+,*) sei kommutativ: Antwort
Status: (Antwort) fertig Status 
Datum: 05:33 Mo 12.11.2007
Autor: gossyk

hallo, ich habe die gleiche aufgabe^^ bei mir war noch der hinweis gegeben, dass man sich zunächst über die charakteristik des ringes klarwerden sollte.

ich bin zu dem entschluss gekommen, dass es sich um den restklassenring modulo 2 handeln muss, also char=2

hier eine frage: wenn ich also behaupte der ring habe die charakteristik 2, muss ich das beweisen? wenn ja.. wie könnte ich das tun?

aber nehmen wir mal an es stimmt dass der ring die charakteristik 2 hat (denke doch das stimmt), dann könnte man die kommutativität für alle elemente vorrechnen und so zeigen..

man könnte wohl auch sagen dass es sich beim restklassenring modulo 2 um den körper [mm] \IF_{2} [/mm] handelt, und im körper gilt ja eh die kommutativität der multiplikation.
hier wieder die frage: muss ich beweisen dass es sich um [mm] \IF_{2} [/mm] handelt, wenn ich das als argumentation benutze?


wie gesagt ich überlege noch selbst um diese aufgabe, also auf meine behauptungen würde ich mich nciht 100%ig verlassen^^ aber hoffe dass sie dir etwas weiterhelfen.
und würde mich freuen wenn sich jmd der fragen annimmt die ich dabei gestellt habe:)

mfg



Bezug
                
Bezug
Ring (R,+,*) sei kommutativ: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:21 Mo 12.11.2007
Autor: Mirtschi

Hallo!

Eure Frage wird schon ausführlich unter "kommutativer Ring" diskutiert. Ihr könnt ja da mal nachschauen.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]