matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Riemann Summe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Riemann Summe
Riemann Summe < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 So 21.04.2019
Autor: rubi

Hallo zusammen,

es geht um die Berechnung des Grenzwertes für n [mm] \to \infty [/mm] für die Reihe

[mm] \summe_{k=1}^{n} \bruch{1}{n} [/mm] * [mm] cos(\bruch{\pi * k}{n}) [/mm]

Ich möchte diese mit einer Riemann-Summe berechnen.

Um auf das zugehörige Integral zu kommen, habe ich die Reihe zunächst für n = 1000 ausführlich aufgeschrieben:

1/1000 * [cos(pi/1000) + ... + cos(1000*pi/1000)].

Aus dem Term in der eckigen Klammer erkenne ich glaube ich sowohl die zu intgrierende Funktion als auch das Integrationsintervall.

Ich habe nun jedoch 2 Lösungen, wobei ich nicht weiß, ob hier beide möglich sind:

Lösung 1: [mm] \integral_{0}^{1}{cos(\pi * x) dx} [/mm]
Hier habe ich das [mm] \pi [/mm] in die Kosinusfunktion gesteckt.

Lösung 2: [mm] \integral_{0}^{\pi}{cos(x) dx} [/mm]
Hier habe ich das [mm] \pi [/mm] als obere Grenze verwendet.

Bei beiden Integralen ergibt sich Null, was auch der Wert der Reihe ist.
Ich weiß aber nicht, ob das nun Zufall ist.

Kann ich beide Integrale als Lösung verwenden ?
Falls nein, woran erkenne ich, welches Integral das richtige ist ?

Danke für eure Antworten.

Viele Grüße
Rubi




        
Bezug
Riemann Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 So 21.04.2019
Autor: fred97


> Hallo zusammen,
>
> es geht um die Berechnung des Grenzwertes für n [mm]\to \infty[/mm]
> für die Reihe
>  
> [mm]\summe_{k=1}^{n} \bruch{1}{n}[/mm] * [mm]cos(\bruch{\pi * k}{n})[/mm]
>  
> Ich möchte diese mit einer Riemann-Summe berechnen.
>
> Um auf das zugehörige Integral zu kommen, habe ich die
> Reihe zunächst für n = 1000 ausführlich aufgeschrieben:
>  
> 1/1000 * [cos(pi/1000) + ... + cos(1000*pi/1000)].
>
> Aus dem Term in der eckigen Klammer erkenne ich glaube ich
> sowohl die zu intgrierende Funktion als auch das
> Integrationsintervall.
>
> Ich habe nun jedoch 2 Lösungen, wobei ich nicht weiß, ob
> hier beide möglich sind:

Beides sind Lösungen.


>  
> Lösung 1: [mm]\integral_{0}^{1}{cos(\pi * x) dx}[/mm]
>  Hier habe
> ich das [mm]\pi[/mm] in die Kosinusfunktion gesteckt.
>
> Lösung 2: [mm]\integral_{0}^{\pi}{cos(x) dx}[/mm]
>  Hier habe ich
> das [mm]\pi[/mm] als obere Grenze verwendet.
>
> Bei beiden Integralen ergibt sich Null, was auch der Wert
> der Reihe ist.
> Ich weiß aber nicht, ob das nun Zufall ist.

Nein, Zufall  ist das nicht.  Obige  Summen sind  Riemann-Summen  fuer beide Integrale.

>
> Kann ich beide Integrale als Lösung verwenden ?

Na klar.


> Falls nein, woran erkenne ich, welches Integral das
> richtige ist ?
>  
> Danke für eure Antworten.
>
> Viele Grüße
>  Rubi
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]