matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemann-integierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Riemann-integierbarkeit
Riemann-integierbarkeit < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-integierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:19 Fr 15.04.2011
Autor: Mathehase

Aufgabe
Auf dem kompakten Intervall [a,b] [mm] \subset \IR [/mm] seien [mm] f_{n} [/mm] : [a,b] [mm] \to \IR. [/mm] n [mm] \in \IN, [/mm] Riemann-integierbare Funktionen, die gleichmäßig gegen die Funktion f : [a,b] [mm] \to \IR [/mm] konvergieren.
Zeigen Sie: Die Funktion f ist ebenalls auf [a,b] Riemann-integierbar.

Hallo!

Ich weiß bei dieser Aufgabe einfach nicht, wie ich sie lösen kann und hoffe, dass Sie mir vielleicht helfen könnten.


Ich hatte mir bisher gedacht, dass die gleichmäßige Stetigkeit ja auf der Definition beruht, dass || [mm] f_{n} [/mm] - f [mm] ||_{\infty , k} \to [/mm] 0 (n [mm] \to \infty [/mm] ) .

Nun geht aus der Aufgabenstellung hervor, dass [mm] f_{n} [/mm] Riemann-integierbar ist, also auch abgeschlossen und beschränkt.

Ebenso wäre ja g:= || [mm] f_{n} [/mm] - f || konvergent und demnach auch beschränkt. Lässt sich nicht hieraus dann folgern, dass auch f beschränkt sein muss; ich denke nämlich, dass g nicht beschränkt wäre, wenn nicht auch f beschränkt ist.
Ich hatte überlegt, ob nicht auch f abgeschlossen ist auf dem Intervall [a,b] nach Aufgabenstellung und dass sich auf diesen beiden Eigeschaften die Riemann-Integierbarkeit von f begründen lässt?

Ich würde mich über Antworten sehr freuen.

Vielen Dank im Voraus,
mathehase

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Riemann-integierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 21.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]