matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieRiemann-Stieltjes-Integrale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Riemann-Stieltjes-Integrale
Riemann-Stieltjes-Integrale < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-Stieltjes-Integrale: Frage zur Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:24 Fr 09.06.2006
Autor: Sir_E

Aufgabe
Seien [mm] \beta_{j} [/mm] : [-1,1] [mm] \mapsto \IR, [/mm] j=1,2,3 mit [mm] \beta_{j}(x)=0 [/mm] für x<0, und [mm] \beta_{j}(x)=1 [/mm] für x>0 und [mm] \beta_{1}(0)=0, \beta_{2}(0)=1, \beta_{3}(0)= \bruch{1}{2}. [/mm]
Es sei f beschränkt auf [-1,1]

a) Zu zeigen: f ist bzgl. [mm] \beta{1} [/mm] auf [-1,1] genau dann Riemann-Stieltjes Integrierbar wenn der f(0+) = f(0). Der Wert des Integrals ist dann f(0).
b) Formulieren und beweisen sie die Aussage für a) für [mm] \beta{2} [/mm]
c) Zu zeigen: f ist bzgl. [mm] \beta{3} [/mm] auf [-1,1] riemann-stieltjes int'bar genau dann wenn f stetig ist in x=0.
d) Es sei f stetig in x=0. Zeigen Sie, dass gilt:

[mm] \integral_{-1}^{1}{f(x) d(\beta{1})} [/mm] = [mm] \integral_{-1}^{1}{f(x) d(\beta{2})} [/mm] = [mm] \integral_{-1}^{1}{f(x) d(\beta{3})} [/mm] = f(0)


nächste Aufgabe:

Mit den Bezeichnungen der vorherigen Aufgabe zeigen Sie, dass [mm] \beta{2} [/mm] bezüglich [mm] \beta{1} [/mm] Riemann-Stieltjes int'bar ist obwohl kein Grenzwert existiert mit

[mm] \limes_{|Z|\rightarrow\0} S_{\beta_{1}}(\beta_{2},Z) [/mm]

Also, a,b,c habe ich glaub ich hingekriegt. Es geht eigentlich also nur um die letzte Frage d. Ich hab da folgendes Problem:
Für das Riemann-Stieltjes_Integral bzgl. [mm] \beta_{3} [/mm] habe ich [mm] \bruch{1}{2}*f(0) [/mm] raus und nicht einfach nur f(0) was ich bezüglich [mm] \beta_{1} [/mm] und [mm] \beta_{2} [/mm] raus habe. Könnt ihr mir da vielleicht weiterhelfen?

Bei der zweiten Frage habe ich rausgefunden, dass die Riemann Stiletjes Summen zwar immer konvergieren aber je nach Wahl der Zwischenvektoren andere Werte haben. Was mache ich jetzt daraus?

Danke schon mal im Voraus!

        
Bezug
Riemann-Stieltjes-Integrale: Alles ist geklärt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Mo 12.06.2006
Autor: Sir_E

Halo Leute

Ich habe keine ahnung wie ich den artikel lösche. aber jedenfalls ist keine antwort mehr nötig, der groschen ist bei mir gefallen :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]