matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemann-Integrierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Riemann-Integrierbarkeit
Riemann-Integrierbarkeit < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 So 27.10.2013
Autor: RoughNeck

Aufgabe
Sei f:Q=[0,1] x [0,1] [mm] \to \IR [/mm] definiert durch
[mm] f(x,y)=\begin{cases} 0, & \mbox{falls } 0 \le x < \bruch{1}{2} \\ 1, & \mbox{falls} \bruch{1}{2} \le x \le1 \end{cases}. [/mm]
Zeigen Sie, dass f Riemann-integrierbar ist und berechnen Sie das Integral [mm] \integral_{}^{}{f(x,y) dx dy} [/mm] über dem Quadrat Q

Hallo an alle.

Ich höre seit Beginn dieses Semesters Analysis 2 und habe diese Aufgabe zu lösen. Die Schwierigkeit dabei besteht für mich nun mehr darin, dass ich Physik studiere und Analysis 1 vor etwa 2 Jahren gehört habe. Dem entsprechend bin ich ein wenig raus aus der "Denkweise" in der Analysis. Zwar habe ich mich vorbereitet und fleißig wiederholt, denn noch fehlt mir momentan jeder Ansatz zur Lösung dieser Aufgabe.

Wenn mir jemand einen Ansatz oder andere Hilfestellungen geben könnte, wie zum Beispiel eine gute Buchempfehlung oder Internetseiten Empfehlung, wäre ich in jedem Fall sehr dankbar.

Lieben Gruß

        
Bezug
Riemann-Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:23 Mo 28.10.2013
Autor: fred97

Es ist schwer, Dir zu helfen, wenn man nicht im Bilde ist, was Ihr in der Vorlesung (schon) gemacht habt und was nicht.

Die Integrierbarkeit von f über Q lässt sich am einfachsten mit dem Lebesgueschen Kriterium erledigen:

f ist Riemannintegrierbar über Q  [mm] \gdw [/mm] f ist auf Q beschränkt und auf Q fast überall stetig.

Für die Berechnung von  $ [mm] \integral_{Q}^{}{f(x,y) dx dy} [/mm] $ bietet sich der Satz von Fubini an.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]