matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRiemann-Integrierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Riemann-Integrierbarkeit
Riemann-Integrierbarkeit < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riemann-Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 So 18.05.2008
Autor: lustigerhurz

Aufgabe
Ist die Funktion
f: [0,1] [mm] \to \IR [/mm] : x [mm] \mapsto \begin{cases} 1, & \exists n \in \IN: x=\bruch{1}{n} \\ 0, & \mbox{sonst } \end{cases} [/mm]
Riemann-integrierbar?? Wenn ja, berechne das Integral

Bitte dringend um Hilfe, weiß überhaupt nicht wie ich rangehen soll.
Ich weiß dass gelten muss
zu [mm] \epsilon [/mm] > 0 gibt es Treppenfunktionen [mm] f_{1},f_{2} \in [/mm] T(I)
mit [mm] f_{1} \le [/mm] f [mm] \le f_{2} [/mm] und
[mm] Int_{I} (f_1{1} [/mm] - [mm] f_{2}) [/mm] < [mm] \epsilon [/mm]

        
Bezug
Riemann-Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 18.05.2008
Autor: Merle23


> Ist die Funktion
>  f: [0,1] [mm]\to \IR[/mm] : x [mm]\mapsto \begin{cases} 1, & \exists n \in \IN: x=\bruch{1}{n} \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
> Riemann-integrierbar?? Wenn ja, berechne das Integral
>  Bitte dringend um Hilfe, weiß überhaupt nicht wie ich
> rangehen soll.
>  Ich weiß dass gelten muss
>  zu [mm]\epsilon[/mm] > 0 gibt es Treppenfunktionen [mm]f_{1},f_{2} \in[/mm]

> T(I)
>  mit [mm]f_{1} \le[/mm] f [mm]\le f_{2}[/mm] und
>  [mm]Int_{I} (f_1{1}[/mm] - [mm]f_{2})[/mm] < [mm]\epsilon[/mm]  

Die Funktion nimmt ja bei 1, 1/2, 1/3, 1/4, ... den Wert 1 an, ansonsten 0.

Als [mm] f_1 [/mm] nimmste die Nullfunktion.

Als [mm] f_2 [/mm] nimmste die Nullfunktion, setzt die aber in kleinen Intervallen um die Punkte 1, 1/2, 1/3, ..., [mm] 1/n_0 [/mm] auf 1.
Also z.B. auf [mm] (1-\bruch{\epsilon}{4n},1), (1/2-\bruch{\epsilon}{4n},1/2+\bruch{\epsilon}{4n}), [/mm] ... bis [mm] 1/n_0. [/mm]
Und dann setzt du sie noch auf [mm] [0,1/n_0) [/mm] auf 1.

Das [mm] n_0 [/mm] musst du natürlich noch passend wählen, je nachdem wie groß dein [mm] \epsilon [/mm] ist.

Dann gilt [mm] f_1

Bezug
                
Bezug
Riemann-Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:24 So 18.05.2008
Autor: lustigerhurz

sorry ich habe mit dem thema grad erst angefangen und nicht wirklich verstanden was genau ich machen muss und habe auch keine bsp-aufgaben dazu gefunden... warum soll das beides die nullfkt.sein.brauch ich nicht ne obere und untere treppenfkt.?

Bezug
                        
Bezug
Riemann-Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 So 18.05.2008
Autor: Merle23


> sorry ich habe mit dem thema grad erst angefangen und nicht
> wirklich verstanden was genau ich machen muss und habe auch
> keine bsp-aufgaben dazu gefunden... warum soll das beides
> die nullfkt.sein.brauch ich nicht ne obere und untere
> treppenfkt.?

Ja richtig.
Deine Funktion ist ja fast überall Null, ausser an den Stellen 1/n, da ist sie 1.
Als untere Treppenfunktion kannst du also nur die Nullfunktion nehmen (weisst du warum?).
Uns als obere Treppenfunktion nimmst du die Nullfunktion, verpasst ihr aber ein paar kleine Treppenstufen - nämlich um jedes 1/n drumrum mit der Höhe 1. Da eine Treppenfunktion aber nur endlich viele Stufen haben darf musst du irgendwann aufhören mit dem dranbauen dieser Treppen und den Rest, also das Intervall [mm] [0,1/n_0] [/mm] aus meiner ersten Antwort, setzte dann eben einfach auf Eins, damit du noch komplett über deiner Funktion drüber bist.
Am besten du malst dir das hin, dann siehst du es sofort.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]