matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRichtungsableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitung
Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: TIpp
Status: (Frage) beantwortet Status 
Datum: 15:31 Di 29.04.2014
Autor: Boastii

Aufgabe
Geben sei die Abbildung

[mm] f:\mathbb R^3 \ni (x_1,x_2,x_3)^T \mapsto \vektor{x_1 sin(\pi x_2)+x_3 \\ x_1 + x_2 e^{x_2}} \in \mathbb R^3 [/mm]

Ermitteln Sie bitte die Richtungsableitung von [mm] f [/mm] in Richtung des Vektors, der entsteht, wenn man den Vektor [mm] (1,1,0) [/mm] um 45° nach unten dreht.

Hey, und schönen Tag,

also ich wie ich die Richtungsableitung in Richtung [mm] e [/mm] bestimme ist mir klar, ich wende folgenden Grenzwert an:

[mm] \limes_{h\rightarrow 0} \frac{f(x_0+he) - f(x_0) }{h} [/mm]

ich frage mich nur wie das mit dem "nach unten dreht" gemeint ist, also um welche Achse ich den jetzt drehen soll? Also welche Matrizen ich dafür brauche. Muss ich den erst auf die x-Achse schieben und dann drehen?

Bräuchte dafür einen Tipp.

vielen Danke.

LG Boastii

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Di 29.04.2014
Autor: fred97


> Geben sei die Abbildung
>
> [mm]f:\mathbb R^3 \ni (x_1,x_2,x_3)^T \mapsto \vektor{x_1 sin(\pi x_2)+x_3 \\ x_1 + x_2 e^{x_2}} \in \mathbb R^3[/mm]
>
> Ermitteln Sie bitte die Richtungsableitung von [mm]f[/mm] in
> Richtung des Vektors, der entsteht, wenn man den Vektor
> [mm](1,1,0)[/mm] um 45° nach unten dreht.
>  Hey, und schönen Tag,
>  
> also ich wie ich die Richtungsableitung in Richtung [mm]e[/mm]
> bestimme ist mir klar, ich wende folgenden Grenzwert an:
>
> [mm]\limes_{h\rightarrow 0} \frac{f(x_0+he) - f(x_0) }{h}[/mm]
>
> ich frage mich nur wie das mit dem "nach unten dreht"
> gemeint ist, also um welche Achse ich den jetzt drehen
> soll? Also welche Matrizen ich dafür brauche. Muss ich den
> erst auf die x-Achse schieben und dann drehen?

Zeichne den Vektor  [mm](1,1,0)[/mm] in ein x-y-z-Koordinatensystem. Der zugehörige "Pfeil" liegt in der x-y-Ebene. Wenn der Pfeil im Ursprung festgenagelt ist und Du die Pfeilspitze loslässt dreht sich der Pfeil nach unten. Halte die Spitze aber nach möglichkeit bald wieder fest, bevor die 45° überschritten sind.

FRED

>
> Bräuchte dafür einen Tipp.
>  
> vielen Danke.
>
> LG Boastii


Bezug
                
Bezug
Richtungsableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:32 Di 29.04.2014
Autor: Boastii

Ich habe das gezeichnet. Ich zerbreche mir den Kopf ... irgendwie will ich nicht auf die Lösung kommen...
Wie kann ich das ausrechnen? Ich kann mir das vorstellen, aber wie ich das ausrechnen ist mit schleierhaft -.-

Danke trotzdem für deine Antwort =)

LG Boastii

Bezug
                        
Bezug
Richtungsableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:19 Di 29.04.2014
Autor: Boastii

HAbe es hinbekommen, schnell mit Geogebra gezeichnet und mir den Kopf zermartert. Danke trotzdem für deine Hilfe =).


LG Boastii


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]