matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichen(Richtungs-)Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - (Richtungs-)Ableitung
(Richtungs-)Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Richtungs-)Ableitung: Ableiten von f(x1,x2)
Status: (Frage) beantwortet Status 
Datum: 22:32 Fr 10.10.2014
Autor: Olli1968

Aufgabe 1
Es seien [mm]f:\IR^2\to\IR [/mm] und [mm] \vec h:\IR\to\IR^2 [/mm] definiert durch [mm] f(x_1,x_2)=e^{x_1} \cdot sin (x_2) [/mm], [mm] \vec x={x_1 \choose x_2}= \vec h(t)={h_1(t) \choose h_2(t)}={t^3 \choose 1+t^2} [/mm], also [mm] f\circ \vec h(t)=e^{t^3}*sin(1+t^2) [/mm].
Differenziere diese Funktion auf zwei Weisen: einmal direkt und einmal mit (6.33).

(6.33) [mm] \bruch{d \vec y}{dt}=\sum_{k=1}^{N} \bruch{\partial \vec y}{\partial x_k} \bruch{dx_k}{dt} [/mm]

Aufgabe 2
Bestimme die Richtungsableitung [mm] \bruch{\partial f}{\partial \vec a}(0,0) [/mm] für [mm] \vec a=\bruch{1}{\wurzel{2}}{1 \choose 1} [/mm]

" Ich habe diese Frage in keinem anderen Forum gepostet! "

Hallo liebe Mathefreunde,

ich habe folgende Lösungsansätze gefunden

Lösung Aufgabe 1
a) direkt ableiten heißt für mich, dass ich mit der Produkt- und Kettenregel ableiten soll.
Somit erhalte ich: [mm] \bruch{dy}{dt}=\bruch{d}{dt}(e^{t^3} * sin(1+t^2))=3t^2e^{t^3} * sin(1+t^2) + e^{t^3} *2t * cos(1+t^2) [/mm]

b) In (6.33) muss also [mm] y=f(h_1(t) , h_2(t)) = e^{t^3}*sin(1+t^2) [/mm] statt [mm]\vec y[/mm] stehen - richtig?

Somit müsste ich (6.33) so umschreiben [mm] \bruch{d y(h_1(t),h_2(t))}{dt}=\sum_{k=1}^{2} \bruch{\partial y(x_1,x_2)}{\partial x_k} \bruch{d x_k}{dt} = \bruch{\partial y(x_1,x_2)}{\partial x_1}*\bruch{d x_1}{dt} + \bruch{\partial y(x_1,x_2)}{\partial x_2}*\bruch{d x_2}{dt} [/mm]
Ich habe damit nun folgendes berechnet [mm] \bruch{dy}{dt}=e^{x_1}*sin(x_2)*3t^2+e^{x_1}*cos(x_2)*2t [/mm]
und wie geht's nun weiter?

Lösung Aufgabe 2
Die Richtungsableitung in Richtung von [mm]\vec a[/mm] mit [mm]|\vec a|=1[/mm] war für [mm]f:\IR^2\to\IR [/mm] so definiert
[mm]\bruch{\partial f(\vec x_0)}{\partial \vec a}:=grad\ f(\vec x_0)*\vec a[/mm]
wobei [mm] grad\ f(\vec x_0) = \vec f '(\vec x_0) (Jacobi-Matrix) [/mm] ist.
Damit erhalte ich [mm] grad\ f(\vec x_0) ={e^0*sin(0) \choose e^0*cos(0)}={0 \choose 1}[/mm]
und erhalte damit für die Richtungsableitung  
[mm]\bruch{\partial f(0,0)}{\partial \vec a}={0 \choose 1}*{\bruch{1}{\wurzel{2}} \choose \bruch{1}{\wurzel{2}}}=0+\bruch{1}{\wurzel{2}}=\bruch{1}{\wurzel{2}} [/mm]
stimmt das so? und was sagt mir das jetzt?

Über Tipps und Rückmeldungen würde ich mich sehr freuen.

LG Olli

        
Bezug
(Richtungs-)Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Sa 11.10.2014
Autor: andyv

Hallo Olli

> Es seien [mm]f:\IR^2\to\IR[/mm] und [mm]\vec h:\IR\to\IR^2[/mm] definiert
> durch [mm]f(x_1,x_2)=e^{x_1} \cdot sin (x_2) [/mm], [mm]\vec x={x_1 \choose x_2}= \vec h(t)={h_1(t) \choose h_2(t)}={t^3 \choose 1+t^2} [/mm],
> also [mm]f\circ \vec h(t)=e^{t^3}*sin(1+t^2) [/mm].
>  Differenziere
> diese Funktion auf zwei Weisen: einmal direkt und einmal
> mit (6.33).
>  
> (6.33) [mm]\bruch{d \vec y}{dt}=\sum_{k=1}^{N} \bruch{\partial \vec y}{\partial x_k} \bruch{dx_k}{dt}[/mm]
>  
> Bestimme die Richtungsableitung [mm]\bruch{\partial f}{\partial \vec a}(0,0)[/mm]
> für [mm]\vec a=\bruch{1}{\wurzel{2}}{1 \choose 1}[/mm]
>  " Ich habe
> diese Frage in keinem anderen Forum gepostet! "
>  
> Hallo liebe Mathefreunde,
>  
> ich habe folgende Lösungsansätze gefunden
>  
> Lösung Aufgabe 1
>  a) direkt ableiten heißt für mich, dass ich mit der
> Produkt- und Kettenregel ableiten soll.
>  Somit erhalte ich: [mm]\bruch{dy}{dt}=\bruch{d}{dt}(e^{t^3} * sin(1+t^2))=3t^2e^{t^3} * sin(1+t^2) + e^{t^3} *2t * cos(1+t^2)[/mm]
>  
>  
> b) In (6.33) muss also [mm]y=f(h_1(t) , h_2(t)) = e^{t^3}*sin(1+t^2)[/mm]
> statt [mm]\vec y[/mm] stehen - richtig?
>  
> Somit müsste ich (6.33) so umschreiben [mm]\bruch{d y(h_1(t),h_2(t))}{dt}=\sum_{k=1}^{2} \bruch{\partial y(x_1,x_2)}{\partial x_k} \bruch{d x_k}{dt} = \bruch{\partial y(x_1,x_2)}{\partial x_1}*\bruch{d x_1}{dt} + \bruch{\partial y(x_1,x_2)}{\partial x_2}*\bruch{d x_2}{dt}[/mm]
>  
> Ich habe damit nun folgendes berechnet
> [mm]\bruch{dy}{dt}=e^{x_1}*sin(x_2)*3t^2+e^{x_1}*cos(x_2)*2t[/mm]
>  und wie geht's nun weiter?

Wenn du nun [mm] $x_1(t)=t^3$, $x_2(t)=1+t^2$ [/mm] einsetzt, siehst du, dass dasselbe herauskommt wie oben.

>
> Lösung Aufgabe 2
>  Die Richtungsableitung in Richtung von [mm]\vec a[/mm] mit [mm]|\vec a|=1[/mm]
> war für [mm]f:\IR^2\to\IR[/mm] so definiert
>  [mm]\bruch{\partial f(\vec x_0)}{\partial \vec a}:=grad\ f(\vec x_0)*\vec a[/mm]
>  
> wobei [mm]grad\ f(\vec x_0) = \vec f '(\vec x_0) (Jacobi-Matrix)[/mm]
> ist.
>  Damit erhalte ich [mm]grad\ f(\vec x_0) ={e^0*sin(0) \choose e^0*cos(0)}={0 \choose 1}[/mm]
>  
> und erhalte damit für die Richtungsableitung  
> [mm]\bruch{\partial f(0,0)}{\partial \vec a}={0 \choose 1}*{\bruch{1}{\wurzel{2}} \choose \bruch{1}{\wurzel{2}}}=0+\bruch{1}{\wurzel{2}}=\bruch{1}{\wurzel{2}}[/mm]
>  
> stimmt das so?

Ja, sieht gut aus.

> und was sagt mir das jetzt?

Inwiefern soll dir das was sagen? Willst du die Bedeutung der Richtungsableitung wissen?

> Über Tipps und Rückmeldungen würde ich mich sehr
> freuen.
>  
> LG Olli

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]