matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenRiccatische DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Riccatische DGL
Riccatische DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Riccatische DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 So 22.10.2006
Autor: gilmore2608

Aufgabe
[mm] xy'-y=x^2+y^2 [/mm]

ich habe diese riccatische DGL und weiß, dass ich eine partikuläre lösung brauche, damit ich sie lösen kann.
da es ein übungsbeispiel ist, muss diese DGL lösbar sein. sieht irgendwer eine partikuläre lösung? ich habs schon mit y=x etc. versucht.

DANKE!

lg alex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Riccatische DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 So 22.10.2006
Autor: Leopold_Gast

Führe eine neue Variable ein:

(1)  [mm]u = \frac{y}{x}[/mm]

Differentiation nach [mm]x[/mm] liefert gemäß Quotientenregel die Beziehung [mm]u' = \frac{xy' - y}{x^2} = \frac{y'}{x} - \frac{u}{x}[/mm], also

(2)  [mm]y' = u + xu'[/mm]

Ersetze nun mittels (1),(2) in der Differentialgleichung die Variablen [mm]y,y'[/mm] durch [mm]u,u'[/mm]. Du erhältst eine Differentialgleichung, die sich durch Trennen der Veränderlichen leicht lösen läßt. Aus der [mm]u[/mm]-Lösung bekommst du mittels (1) dann die [mm]y[/mm]-Lösung.

Bezug
                
Bezug
Riccatische DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:55 So 22.10.2006
Autor: gilmore2608

erstmals danke!!!

muss ich da beim substitueren und integrien irgendwo sowas wie das totale differential oder so bilden? oder kann ich einfach so tun, als wäre mein u jetzt meinen neue variable und unabhängig von x und y?

Bezug
                        
Bezug
Riccatische DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Mo 23.10.2006
Autor: leduart

Hallo gilmore

> muss ich da beim substitueren und integrien irgendwo sowas
> wie das totale differential oder so bilden? oder kann ich
> einfach so tun, als wäre mein u jetzt meinen neue variable
> und unabhängig von x und y?

Die Frage ist komisch y=f(x) und keine "Variable" bei ner Substitution ersetzt man f(x) durch eine andere Funktion g(x) z. Bsp g(x)=f(x)/x oder andere möglichkeiten.
dann suchst du ne Lösung der dgl. für g(x), wenn du die hast kensst du dann auch f(x).
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]