matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenRestklassenrnge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Restklassenrnge
Restklassenrnge < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassenrnge: Idee
Status: (Frage) beantwortet Status 
Datum: 21:54 Do 23.10.2008
Autor: grafzahl123

Aufgabe
Sind die Restkalssenringe [mm] \IZ [/mm] \ [mm] 4\IZ [/mm] und  [mm] \IZ [/mm] \ [mm] 2\IZ [/mm] x [mm] \IZ [/mm] \ [mm] 2\IZ [/mm] isomorph?

ich hab mir folgendes überlegt:
[mm] \IZ [/mm] \ [mm] 4\IZ [/mm] ={0,1,2,3}
[mm] \IZ [/mm] \ [mm] 2\IZ [/mm] x [mm] \IZ [/mm] \ [mm] 2\IZ [/mm] ={(0,0),(0,1),(1,0),(1,1)}
isomorph bedeutet ja bijektiver homomorphismus!?
also zeige ich, dass die Abb.
[mm] \IZ [/mm] \ [mm] 4\IZ [/mm] --> [mm] \IZ [/mm] \ [mm] 2\IZ [/mm] x [mm] \IZ [/mm] \ [mm] 2\IZ [/mm]
{0,1,2,3} --> {(0,0),(0,1),(1,0),(1,1)} bijektiv ist.(ist sie ja)

dann muss ich ja noch den homomorphismus zeigen, also:
f(a*b)=f(a)*f(b)
sieht das dann so aus?:
f(0*1)=f(0)*f(1)
falls das so richtig ist wie muss ich weiter vorgehen?
danke schon mal für die hilfe.



        
Bezug
Restklassenrnge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Fr 24.10.2008
Autor: Brazzo

Hallo,

zunächst mal ist das, was du da skizzierst noch keine Abbildung. Man müsste schon jedem Element aus [mm] \mathbb{Z}/4\mathbb{Z} [/mm] ein Element aus [mm] \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z} [/mm] zuordnen.
Dass es bijektive Abbildungen f zwischen den beiden Ringen gibt, steht aber außer Frage. Wie genau f aussieht, spielt hier aber gar keine Rolle.

Nehmen wir mal an, f wäre bijektiv und Ringhomomorphismus.
Das Problem hierbei ist allerdings, dass jedes Element aus [mm] \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z} [/mm] selbstinvers (bzgl. Addition) ist.
D.h., es müsste f(-x)=-f(x)=f(x) sein, falls f Ringhomomorphismus ist. Was aber im Widerspruch zur Injektivität von f stünde, da in [mm] \mathbb{Z}/4\mathbb{Z} [/mm] x [mm] \neq [/mm] -x ist für x [mm] \neq [/mm] 0. Es gibt also keinen Isomorphismus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]