matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRestklassenring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Restklassenring
Restklassenring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassenring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Sa 12.03.2011
Autor: melisa1

Hallo,

ich hab ein Problem dabei zu bestimmen, welches Element ein inverses hat. Ich weiß, dass man es von der Mutliplikationstabelle ablesen kann, aber nicht wie.

Als beispiel habe ich jetzt mal [mm] \IZ \4 \IZ [/mm]

Die Elemente 1 und 3 haben inverse und 0 und 2 nicht, aber warum?



* | 0   1   2  3  

0 | 0   0   0  0

1 | 0   1   2  3

2 | 0  2   0   2

3 | 0  3   2   1


die striche über den zahlen hab ich jetzt mal weggelassen.

Danke im voraus

Lg

        
Bezug
Restklassenring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:01 Sa 12.03.2011
Autor: melisa1

ok ich glaub ich habs gerade gemerkt immer da wo eine 1 entsteht

Bezug
        
Bezug
Restklassenring: Ergänzung
Status: (Antwort) fertig Status 
Datum: 19:04 Sa 12.03.2011
Autor: kamaleonti

Hallo,
> Hallo,
>  
> ich hab ein Problem dabei zu bestimmen, welches Element ein
> inverses hat. Ich weiß, dass man es von der
> Mutliplikationstabelle ablesen kann, aber nicht wie.
>
> Als beispiel habe ich jetzt mal [mm]\IZ/4\IZ[/mm]
>  
> Die Elemente 1 und 3 haben inverse und 0 und 2 nicht, aber
> warum?

Man kann das auch so begründen:
Dass 0 kein multiplikatives Inverses hat, ist klar. Das ist bei jedem Restklassenring so.
Sonst gilt:
Ein Element a aus dem Restklassenring [mm] \IZ/n\IZ [/mm] hat genau dann ein multiplikatives Inverses, wenn a kein Nullteiler ist (d.h. es existiert kein [mm] b\in\IZ/n\IZ,b\neq0 [/mm] mit ab=0). Weiterhin ist a genau dann kein Nullteiler, wenn ggT(a,n)=1.
Hier ist ggT(2,4)=2, also ist 2 ein Nullteiler. Daher besitzt 2 im [mm] \IZ/4\IZ [/mm] kein multiplikatives Inverses.

Gruß

Bezug
                
Bezug
Restklassenring: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Sa 12.03.2011
Autor: felixf

Moin,

>  Man kann das auch so begründen:
>  Dass 0 kein multiplikatives Inverses hat, ist klar. Das
> ist bei jedem Restklassenring so.

nicht ganz ;-)

In [mm] $\IZ/1\IZ$ [/mm] hat auch 0 ein Inverses, da dort 0 = 1 gilt.

Das ist allerdings (bis auf Isomorphie) der einzige Ring mit Eins, in dem 0 invertierbar ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]