matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeRestklassen- Beweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Restklassen- Beweise
Restklassen- Beweise < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassen- Beweise: Lösung
Status: (Frage) für Interessierte Status 
Datum: 19:48 Mo 03.05.2010
Autor: Yuppie

Aufgabe
Seien [mm] R_{3} [/mm] die Menge aller Restklassen modulo 3 und
[mm] R^{2}_{3} [/mm] := [mm] {(\overline{x}; \overline{y}) \in R_{3} \times R_{3} : \overline{x} \in R_{3} und \overline{y} \in R_{3}} [/mm]
die Menge aller Restklassenpaare modulo 3.

(a) Erklären Sie, wie man fachlich richtig in [mm] R^{2}_{3} [/mm] eine Addition und eine skalare Multiplikation definieren kann.

(b) Beweisen Sie, dass [mm] R^{2}_{3} [/mm] ein R3-Vektorraum ist.

(c) Geben Sie alle Elemente von [mm] R^{2}_{3} [/mm] an.

(d) Bestimmen Sie die Lösungsmenge der linearen Gleichungssysteme über [mm] R_{7}: [/mm]

(1)
[mm] \overline{3x} [/mm] + [mm] \overline{5y} [/mm] = [mm] \overline{1} [/mm]
[mm] \overline{4x} [/mm] + [mm] \overline{2y} [/mm] = [mm] \overline{2} [/mm]

(2)
[mm] \overline{3x} [/mm] + [mm] \overline{5y} [/mm] = [mm] \overline{1} [/mm]
[mm] \overline{4x} [/mm] + [mm] \overline{3y} [/mm] = [mm] \overline{2} [/mm]

HILFE !!! Ich habe leider noch nie von Restklasse gehört und durch den ganzen Internet kram blickt man so leider nicht durch. Vielleicht könnt ihr mir helfen in der ein oder anderen Aufgabe. Brauche dringend die Lösung :) :)

        
Bezug
Restklassen- Beweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Mo 03.05.2010
Autor: schachuzipus

Hallo,

auch hier gilt:

Der Matheraum ist keine Lösungsmaschine!

Schaue dir die Definitionen an, frage konkret!

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]