matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRestgliedabschätzung Taylorrei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Restgliedabschätzung Taylorrei
Restgliedabschätzung Taylorrei < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restgliedabschätzung Taylorrei: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Do 27.01.2011
Autor: Marius6d

Aufgabe
Bestimme das Restglied der Funktion [mm] -ln(1-\bruch{x}{2}) [/mm] um x0=0

Also das ist der letzte Teil der Aufgabe, die Taylorreihe habe ich schon bestimmt.

Also das Restglied hat ja dann die Lagrange Form:

[mm] Rn(x)=\bruch{1}{n+1}*(\bruch{x}{2-tx})^{n+1} [/mm]

Aber was muss ich jetzt damit überhaupt machen? Verstehe das überhaupt nicht

        
Bezug
Restgliedabschätzung Taylorrei: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Do 27.01.2011
Autor: skoopa

Hey!

> Bestimme das Restglied der Funktion [mm]-ln(1-\bruch{x}{2})[/mm] um
> x0=0
>  Also das ist der letzte Teil der Aufgabe, die Taylorreihe
> habe ich schon bestimmt.
>  
> Also das Restglied hat ja dann die Lagrange Form:
>  
> [mm]Rn(x)=\bruch{1}{n+1}*(\bruch{x}{2-tx})^{n+1}[/mm]

Das ist so nicht ganz richtig. Im Allgemeinen hat das Restglied einer Funktion f die auf (a,b) definiert ist die Darstellung:
[mm]R_{n}(x)=\bruch{f^{(n)}(\mu)}{n!}(x-x_{0})^n[/mm]
mit einem [mm] \mu\in(a,b) [/mm] und wenn um [mm] x_{0} [/mm] entwickelt wird.
Jetzt ist bei dir [mm] x_{0}=0 [/mm] und [mm] f(x)=(-ln(1-\bruch{x}{2})). [/mm] Um das Restglied jetzt explizit anzugeben müsstest du die n-te Ableitung von f berechnen. Wenn du dir die ersten 3 Ableitungen davon anschaust siehst du schon eine Gesetzmäßigkeit.
Dann musst du die Ableitung in die Restgliedformel einsetzen. Allerdings kannst du das [mm] \mu [/mm] soweit ich grad weiß nicht explizit bestimmen. Sondern du weißt nur, dass es existiert.

>  
> Aber was muss ich jetzt damit überhaupt machen? Verstehe
> das überhaupt nicht

Grüße!
skoopa

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]