matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationRestgliedabschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Interpolation und Approximation" - Restgliedabschätzung
Restgliedabschätzung < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restgliedabschätzung: \xi bestimmen
Status: (Frage) beantwortet Status 
Datum: 14:49 So 16.07.2006
Autor: DAB268

Hallo.

Ich vertsehe die Restgliedabschätzung der Numerik nicht ganz.
Aus dem Anhang Aufgabe 1 soll hierfür mal als Beispiel dienen:

Die Formel der Restgliedabschätzung ist ja [mm] $|p_n(x)-f(x)|= \max_{\xi\in\left[x_o,x_n\right]}\bruch{|f^{(n+1)}(\xi)|}{(n+1)!}\cdot|\omega_n|$ [/mm] mit  [mm] $\omega_n=(x-x_0)\cdot\hdots\cdot(x-x_n)$ [/mm]

Soweit so gut. Was jetzt aber mein Problem ist aber, wie ich auf das [mm] \xi [/mm] komme. Kann mir dies evtl. jemand mal erklären.

[a]Aufgabe 1

MfG
DAB268

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Restgliedabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 So 16.07.2006
Autor: Mathematiker84

Hallo,

die e-Funktion ist monoton steigend, deshalb nimmst du als [mm] \xi [/mm] 2, also den größten Wert von -1, 0, 1, 2.

Bezug
                
Bezug
Restgliedabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 So 16.07.2006
Autor: DAB268


> Hallo,
>  
> die e-Funktion ist monoton steigend, deshalb nimmst du als
> [mm]\xi[/mm] 2, also den größten Wert von -1, 0, 1, 2.

also kann man im Grunde sagen, man nimmt den Knotenwert als [mm] \xi, [/mm] für den [mm] f(x_i) [/mm] maximal wird?

Bezug
                        
Bezug
Restgliedabschätzung: Genau
Status: (Antwort) fertig Status 
Datum: 17:19 So 16.07.2006
Autor: Tequila

Richtig!
du suchst den Punkt wo das xi so gewählt ist, das du den maximal größten Funktionswert bekommst.
dieser Funktionswert kann aber auch zwischen x und x0 liegen
hätte auch in dem Fall z.B. 1,5 oder so sein können.

Muss nur im Intervall von x und x0 (x-Knoten) liegen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]