matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenRestglied des Taylorpolynoms
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Restglied des Taylorpolynoms
Restglied des Taylorpolynoms < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restglied des Taylorpolynoms: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:27 Mi 14.11.2007
Autor: Kreator

Aufgabe
Bestimmen Sie das Taylorpolynom 3. Grades mit dem Zentrum t* = [mm] \pi/3 [/mm] der Sinusfunktion. Geben Sie eine obere Schranke für den Fehler an, den Sie bei einer Näherung durch den Wert dieses Polynoms für sin(59°) begehen (rechnen Sie im Bogenmass).

Taylorpolynom kann ich leicht berechnen:

f'(x) = cos(t)
f''(x) = -sin(t)
f'''(x) = -cos(t)
sin(t*) = [mm] \wurzel{3}/3 [/mm] und cos(t*) = 1/2

[mm] P_{3}(t) [/mm] = [mm] \wurzel{3}/2 [/mm] + [mm] 1/2*(t-\pi/3) [/mm] - [mm] \wurzel{3}/2*(t-\pi/3)^{2} [/mm] - [mm] 1/12*(t-\pi/3)^{3} [/mm]

Wie kann man aber den Fehler berechnen; macht man dies mit der Restgliedform nach Lestrange?

        
Bezug
Restglied des Taylorpolynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Fr 16.11.2007
Autor: rainerS

Hallo!

> Bestimmen Sie das Taylorpolynom 3. Grades mit dem Zentrum
> t* = [mm]\pi/3[/mm] der Sinusfunktion. Geben Sie eine obere Schranke
> für den Fehler an, den Sie bei einer Näherung durch den
> Wert dieses Polynoms für sin(59°) begehen (rechnen Sie im
> Bogenmass).
>  Taylorpolynom kann ich leicht berechnen:
>
> f'(x) = cos(t)
>  f''(x) = -sin(t)
>  f'''(x) = -cos(t)
>  sin(t*) = [mm]\wurzel{3}/3[/mm] und cos(t*) = 1/2
>  
> [mm]P_{3}(t)[/mm] = [mm]\wurzel{3}/2[/mm] + [mm]1/2*(t-\pi/3)[/mm] -
> [mm]\wurzel{3}/2*(t-\pi/3)^{2}[/mm] - [mm]1/12*(t-\pi/3)^{3}[/mm]
>  
> Wie kann man aber den Fehler berechnen; macht man dies mit
> der Restgliedform nach Lestrange?

Ja, nur dass der Herr Lagrange hieß ;-)

Das geht sehr gut, weil Sinus und Cosinus dem Betrag nach [mm]\le 1[/mm] sind, sodass du das Restglied abschätzen kannst.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Restglied des Taylorpolynoms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:55 So 18.11.2007
Autor: Kreator

Ok, die Formel für das Restglied sieht ja wie folgt aus:

[mm] R_{n}(t)=\bruch{f^{n+1}(\varepsilon)}{(n+1)!}*(t-t_{0})^{n+1} [/mm]

Aus der Aufgabenstellung weiss ich dass n = 3 und t = [mm] \pi/3 [/mm] bzw. 60° ist. Somit komm ich auf die Formel:

[mm] R_{3}(t)=\bruch{sin(\varepsilon)}{4!}*(t-\pi/3)^{4} [/mm]

Was kann ich nun mit dieser Formel aussagen? und was spielt das [mm] \varepsilon [/mm] genau für eine Rolle?

Bezug
                        
Bezug
Restglied des Taylorpolynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 03:45 So 18.11.2007
Autor: max3000

Das t ist dir ja auch bekannt. das sind doch 59°.

Das setzt du mal ein, bildest noch die 4. Ableitung und schaust, wofür diese maximal wird. Das [mm] \epsilon [/mm] ist eigentlich immer unbekannt, desswegen kannst du das auch nicht direkt angeben.

Bezug
                                
Bezug
Restglied des Taylorpolynoms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 So 18.11.2007
Autor: rainerS


> Das t ist dir ja auch bekannt. das sind doch 59°.
>  
> Das setzt du mal ein, bildest noch die 4. Ableitung und
> schaust, wofür diese maximal wird. Das [mm]\epsilon[/mm] ist
> eigentlich immer unbekannt, desswegen kannst du das auch
> nicht direkt angeben.

[mm]\epsilon[/mm] ist nicht bekannt, aber es ist bekannt, dass [mm]\epsilon[/mm] zwischen t und [mm]t_0[/mm] liegt.

Damit kann man das Maximum des Restglieds einfach ausrechnen.

  Viele Grüße
    Rainer

Bezug
                                        
Bezug
Restglied des Taylorpolynoms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 So 18.11.2007
Autor: Kreator

Ok, vielen Dank, verstehs jetzt schon etwas besser. Nun habe ich die Lösung zu der Aufgabe gefunden und die sieht wie folgt aus:

Es gilt: [mm] t-t_{0} [/mm] = 1° = [mm] 2\pi/360, [/mm] n=3)   Wieso gibt [mm] t-t_{0} [/mm] ein Grad? Es müsste doch -1° geben.

[mm] R_{3}=\bruch{(t-\pi/3)^{4}}{4!}*sin \varepsilon \le \bruch{(\pi/180)^{4}}{24} [/mm]  

da sin [mm] \varepsilon \le [/mm] 1

Bezug
                                                
Bezug
Restglied des Taylorpolynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 So 18.11.2007
Autor: rainerS

Hallo!

> Ok, vielen Dank, verstehs jetzt schon etwas besser. Nun
> habe ich die Lösung zu der Aufgabe gefunden und die sieht
> wie folgt aus:
>  
> Es gilt: [mm]t-t_{0}[/mm] = 1° = [mm]2\pi/360,[/mm] n=3)  Wieso gibt [mm]t-t_{0}[/mm]
> ein Grad? Es müsste doch -1° geben.

Ja, das ist richtig. Allerdings macht es hier keinen Unterschied, weil die Zahl zur vierten Potenz genommen wird.

> [mm]R_{3}=\bruch{(t-\pi/3)^{4}}{4!}*sin \varepsilon \le \bruch{(\pi/180)^{4}}{24}[/mm]
>  
>
> da sin [mm]\varepsilon \le[/mm] 1

Richtig. Du könntest das sogar noch verbessern, weil du weisst, dass [mm]0
  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]