matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenResonanzfrequenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Resonanzfrequenz
Resonanzfrequenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Resonanzfrequenz: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:03 Di 25.11.2008
Autor: jojo1484

Aufgabe
Wird ein schwingungsfähige System der Masse m (z.B. Federpendel) von aussen periodisch mit
der Frequenz w! angeregt, so wird das System in Schwingung geraten. Die Amplitude A dieser
angeregten Schwingung hängt von der Erregerfrequenz ! ab und es gilt:
A(w) = [mm] \bruch{a}{\wurzel{(m²*w_{0}²-w²)²+b²*w²}} [/mm]
hierbei ist a die Amplitude der äußeren, periodischen Anregung, !0 die Eigenfrequenz des
Systems (also die Frequenz, mit der die Masse nach einmaliger Anregung und ohne weiteres,
äußeres Zutun schwingen würde) und b eine Reibungskonstante.
Berechnen Sie die sogenannte Resonanzfrequenz w'!, bei der das angeregte System eine maximale
Amplitude aufweist. (Bei geringer Dämpfung (b klein) kann dies zu einer Resonanzkatastrophe
führen.)
(Hinweis: Überlegen Sie zunächst, wann der Quotient am größten wird!)

Der Quotient wird am größten, je kleiner der Zähler ist.

Ich weiß dass die Lösung w'= [mm] \wurzel{w_{0}²-\bruch{b²}{2m²}} [/mm] ist.

Aber wie komme ich auf diese Formel?

Danke für Eure Hilfe.



        
Bezug
Resonanzfrequenz: nenner statt zähler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Di 25.11.2008
Autor: jojo1484

natürlich wird der Quotient möglichst groß, wenn der Nenner möglichst klein ist.
sorry! hab wohl schon geschlafen

Bezug
        
Bezug
Resonanzfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Di 25.11.2008
Autor: leduart

Hallo
Der Nenner muss ein Minimum habe!
also auch das Quadrat des nenners!
Wie man das Min. einer fkt sucht weisst du doch?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]