matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisResiduum Berechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Residuum Berechnung
Residuum Berechnung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuum Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 29.12.2008
Autor: bene1

Hallo

Ich würde gerne das Residuum des folgenden Polynoms berechnen, komme aber irgendwie nicht wirklich weiter:

f(z) = [mm] {(z^2 + z + 1) / (z+1)^3} [/mm]

Ich weiß dass ich zunächst erstmal eine Laurententwicklung machen sollte. Um -1, da dass ja die Polstelle ist. Am Folgenglied "-1" kann ich dann das Residdum ablesen. Dazu habe ich zuerst eine Partialbruchzerlegung durchgeführt:

f(z) = [mm] {1 / (z+1)^3} [/mm] + [mm] {1 / (1+z^2) + 1 / (1+z)} [/mm]

Nur weiß ich jetzt nicht wie ich weiter machen könnte. Gibt es in diesem Fall vielleicht noch eine schnellere Methode, das Residuum zu bestimmen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Residuum Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Mo 29.12.2008
Autor: MathePower

Hallo bene1,


[willkommenmr]


> Hallo
>  
> Ich würde gerne das Residuum des folgenden Polynoms
> berechnen, komme aber irgendwie nicht wirklich weiter:
>  
> f(z) = [mm]{(z^2 + z + 1) / (z+1)^3}[/mm]
>  
> Ich weiß dass ich zunächst erstmal eine Laurententwicklung
> machen sollte. Um -1, da dass ja die Polstelle ist. Am
> Folgenglied "-1" kann ich dann das Residdum ablesen. Dazu
> habe ich zuerst eine Partialbruchzerlegung durchgeführt:
>  
> f(z) = [mm]{1 / (z+1)^3}[/mm] + [mm]{1 / (1+z^2) + 1 / (1+z)}[/mm]


Das stimmt nicht ganz:

[mm]f\left(z\right)=\bruch{1}{\left(z+1\right)^{3}}\red{-}\bruch{1}{\left(z+1\right)^ {2}}+\bruch{1}{z+1}[/mm]


>  
> Nur weiß ich jetzt nicht wie ich weiter machen könnte. Gibt
> es in diesem Fall vielleicht noch eine schnellere Methode,
> das Residuum zu bestimmen?
>  
>


Nun, das Residuum von f ist die Zahl [mm]a_{-1}[/mm] in der Laurentreihe.

Alternativ kannst Du das Residuum nach dieser Formel berechnen:

[mm]\operatorname{res}_{c}\left(f\right)=\bruch{1}{\left(m-1\right)!}g^{\left(m-1\right}\left(c\right)[/mm]

,wobei f in c einen Pol m-ter Ordnung hat und g die holomorphe
Fortsetzung von [mm]\left(z-c\right)^{m}f\left(z\right)[/mm] nach c ist.


>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>  


Gruß
MathePower

Bezug
                
Bezug
Residuum Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Di 30.12.2008
Autor: bene1

Danke! Mit der Formel bekomme ich das Residuum für diese Funktion jetzt raus.

Wenn ich nun aber die Funktion

f(z) = [mm] {(z^2 + z + 1) / (z^3+1)}[/mm]

habe, und diese Formel anwenden möchte, gehe ich ja so vor:

Polstelle 1. Ordnung, da Nenner die Potenz 1 hat (oder bestimme ich die Ordnung des Pols anders?) und dann kann ich Res(f,-1) nicht bestimmen, da der Nenner somit =0 wird.

Ist da ein Denkfehler in der Rechnung oder muss ich hier anders vorgehen?

Bezug
                        
Bezug
Residuum Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Di 30.12.2008
Autor: MathePower

Hallo bene1,

> Danke! Mit der Formel bekomme ich das Residuum für diese
> Funktion jetzt raus.
>
> Wenn ich nun aber die Funktion
>  
> f(z) = [mm]{(z^2 + z + 1) / (z^3+1)}[/mm]
>
> habe, und diese Formel anwenden möchte, gehe ich ja so
> vor:
>  
> Polstelle 1. Ordnung, da Nenner die Potenz 1 hat (oder
> bestimme ich die Ordnung des Pols anders?) und dann kann
> ich Res(f,-1) nicht bestimmen, da der Nenner somit =0 wird.
>
> Ist da ein Denkfehler in der Rechnung oder muss ich hier
> anders vorgehen?


Hier benötigst Du die holomorphe Fortsetzung [mm]g\left(z\right)=(z+1)*f\left(z\right)[/mm]

Damit Du das berechnen kannst, zerlege [mm]z^{3}+1=\left(z+1\right)*f_{2}\left(z\right)[/mm],
wobei [mm]f_{2}\left(z\right)[/mm] ein Polynom 2. Grades in z ist.


Gruß
MathePower

Bezug
                                
Bezug
Residuum Berechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Di 30.12.2008
Autor: bene1

Danke schön für die schnelle Antwort :)

Eine letzte Frage dazu hätte ich noch: Die Ordnung einer Polstelle: Die ergibt sich doch aus der Potenz um den Term, der für die Nullstelle im nenner verantwortlich ist - ganz analog zu den gebrochen rationelane Funktionen die man in der Schule hatte, oder?


Also bei dem Beispiel oben wegen (x+1)(...) im Nenner ist bei -1 eine Polstelle 1. Ordnung und die weiteren Polstellen, welche in diesem Fall komplex sind, ergeben sich aus dem weiteren Term?

Bezug
                                        
Bezug
Residuum Berechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Di 30.12.2008
Autor: MathePower

Hallo bene1,

> Danke schön für die schnelle Antwort :)
>  
> Eine letzte Frage dazu hätte ich noch: Die Ordnung einer
> Polstelle: Die ergibt sich doch aus der Potenz um den Term,
> der für die Nullstelle im nenner verantwortlich ist - ganz
> analog zu den gebrochen rationelane Funktionen die man in
> der Schule hatte, oder?
>  


Ja.


>
> Also bei dem Beispiel oben wegen (x+1)(...) im Nenner ist
> bei -1 eine Polstelle 1. Ordnung und die weiteren
> Polstellen, welche in diesem Fall komplex sind, ergeben
> sich aus dem weiteren Term?


So isses.


Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]