matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisResiduenformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Residuenformel
Residuenformel < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Residuenformel: Klausur-Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:38 Fr 25.11.2005
Autor: MP3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Für die Vorbereitung zu einer Klausur möchte ich folgendes Beispiel lösen, bin mir aber nicht ganz klar, wie ich die Residuen ausrechne.

[mm] \integral_{0}^{\infty} {\bruch{\cos x}{x^{2} + 1} dx} [/mm] = [mm] \bruch{\pi}{2e} [/mm]

[mm] \integral_{0}^{\infty} {\bruch{\cos x}{x^{2} + a^{2}} dx} [/mm] = [mm] \bruch{\pi}{2ae^{a}} [/mm]
a > 0

[mm] \integral_{0}^{\infty} {\bruch{\log x}{x^{2} + a^{2}} dx} [/mm] = [mm] \bruch{\pi}{2a} \log [/mm] a
a > 0

Ich hoffe, ich habe alles richtig gemacht. Danke und liebe Grüße MP3

        
Bezug
Residuenformel: Kontrolle
Status: (Antwort) fertig Status 
Datum: 22:36 Fr 25.11.2005
Autor: MathePower

Hallo MP3,

[willkommenmr]

> Für die Vorbereitung zu einer Klausur möchte ich folgendes
> Beispiel lösen, bin mir aber nicht ganz klar, wie ich die
> Residuen ausrechne.
>  
> [mm]\integral_{0}^{\infty} {\bruch{\cos x}{x^{2} + 1} dx}[/mm] =
> [mm]\bruch{\pi}{2e}[/mm]

[ok]

>  
> [mm]\integral_{0}^{\infty} {\bruch{\cos x}{x^{2} + a^{2}} dx}[/mm] =
> [mm]\bruch{\pi}{2ae^{a}}[/mm]
>  a > 0

[ok]

>  
> [mm]\integral_{0}^{\infty} {\bruch{\log x}{x^{2} + a^{2}} dx}[/mm] =
> [mm]\bruch{\pi}{2a} \log[/mm] a
>  a > 0

>  

Hier bin ich mir selbst nicht sicher.

Eine Beispielrechung der ersten Aufgabe:

[mm] \begin{gathered} \int\limits_0^\infty {\frac{{\cos \;x}} {{x^2 \; + \;1}}\;dx} \; = \;\operatorname{Re} \;\int\limits_0^\infty {\frac{{e^{ix} }} {{x^2 \; + \;1}}\;dx} \hfill \\ = \;\frac{1} {2}\;\operatorname{Re} \;\int\limits_{ - \infty }^\infty {\frac{{e^{ix} }} {{x^2 \; + \;1}}\;dx} \hfill \\ = \;\pi \;i\;res\left( {\frac{{e^{ix} }} {{x^2 \; + \;1}}} \right) \hfill \\ = \;\pi \;i\;\left[ {\frac{{e^{ix} }} {{x\; + \;i}}} \right]_i = \;\pi \;i\;\frac{{e^{i^2 } }} {{2\;i}}\; = \;\frac{\pi } {{2\;e^1 }} \hfill \\ \end{gathered} [/mm]

Gruß
MathePower

Bezug
                
Bezug
Residuenformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:48 Fr 25.11.2005
Autor: MP3

Sorry. Man soll nicht das Ergebnis ausrechnen sondern mit Hilfe des Residuensatzes zeigen, wie man auf das Ergebnis kommt. Da hab ich wohl die Frage zu schreiben vergessen.

Danke und liebe Grüße MP3

Bezug
        
Bezug
Residuenformel: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:30 Do 01.12.2005
Autor: MP3

Die Aufgabe lautet: Zeigen Sie mit Hilfe des Residuensatzes, dass ...
Geben sie dabei alle Substitutionen und Ableitungen an.

Ich fürchte, ich habe nicht verstanden, wie man ein Residuum ausrechnet. Kann mir das jemand erklären?

Danke! MP3

Bezug
                
Bezug
Residuenformel: Erklärungsversuch
Status: (Antwort) fertig Status 
Datum: 21:48 Do 01.12.2005
Autor: MathePower

Hallo MP3,

> Die Aufgabe lautet: Zeigen Sie mit Hilfe des
> Residuensatzes, dass ...
> Geben sie dabei alle Substitutionen und Ableitungen an.
>  
> Ich fürchte, ich habe nicht verstanden, wie man ein
> Residuum ausrechnet. Kann mir das jemand erklären?

Für die Berechnung des Residuums gilt folgendes:

Hat f(z) in c einen Pol m-ter Ordnung und ist g die holomorphe Fortsetzung von [mm]\left( {z - \;c} \right)^m \;f(z)[/mm] nach c, so gilt:

[mm]res_c f\; = \;\frac{1} {{\left( {m - 1} \right)!}}\;g^{m - 1} (c)[/mm]

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]