matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikRentenrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Jahre berechnen
Status: (Frage) beantwortet Status 
Datum: 08:20 Mi 23.02.2011
Autor: sax318

Aufgabe
Sie zahlen zwecks Rückzahlung eines Annuitätenkredites in der Höhe von 30.000 Euro jährlich nachschüssig eine Annuität von exakt 4.058,54 Euro. Der mit der Bank vereinbarte Zinssatz beträgt 8 3/8 % p. a. Nach wie viel Jahresraten ist der Kredit zurückgezahlt (n = ?)

Bn = R [mm] *((q^n-1)/(q^n*(q-1))) [/mm]
Bn = 30.000
R = 4.058,41
q= 1,08375
n = ?

30.000 = 4.058,41 [mm] *((1,08375^n-1)/( 1,08375^n*(1,08375-1))) [/mm]
7,3920574806389694486264325191393 = [mm] ((1,08375^n-1)/( 1,08375^n*(1,08375-1))) [/mm]
7,3920574806389694486264325191393 * [mm] (1,08375^n*(1,08375-1)) [/mm] = [mm] 1,08375^n-1 [/mm]
8, [mm] 3920574806389694486264325191393*(1,08375^n*(1,08375-1)) [/mm] = [mm] 1,08375^n [/mm]
8, 3920574806389694486264325191393*(1,8375^(2n) – [mm] 1,8375^n) [/mm] = [mm] 1,08375^n [/mm]
8, 3920574806389694486264325191393 = [mm] (1,08375^n/1,08375^{2n}) [/mm] - [mm] 1,08375^n/1,08375^n [/mm]
8, 3920574806389694486264325191393 = [mm] (1,08375^n/1,08375^{2n}) [/mm] - 1
9, 3920574806389694486264325191393 = [mm] (1,08375^n/1,08375^{2n}) [/mm]


leider weiß ich nciht wies weiter geht.. :-( weil 1,083..^n/1,083..^2n
kann man ja leider nicht durchdivisdieren odeR?.. möglich? das da dann nur noch [mm] 1,083^n [/mm] steht?

dann wärs leicht:
9, 3920574806389694486264325191393 = [mm] 1,08375^n [/mm]
n*log(1,08375) =log(9, 3920574806389694486264325191393)
n = log(9, 3920574806389694486264325191393) / log(1,08375)

n = 0,9727607418515727435903723086072/0,03492911048426670873415100773831
n= 27,849570984343794140305692782459

hmm mehr als 15 wäre wohl irrsinn schätze ich?..

danke schon mal


        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Mi 23.02.2011
Autor: Josef

Hallo sax318,

> Sie zahlen zwecks Rückzahlung eines Annuitätenkredites in
> der Höhe von 30.000 Euro jährlich nachschüssig eine
> Annuität von exakt 4.058,54 Euro. Der mit der Bank
> vereinbarte Zinssatz beträgt 8 3/8 % p. a. Nach wie viel
> Jahresraten ist der Kredit zurückgezahlt (n = ?)
>  Bn = R [mm]*((q^n-1)/(q^n*(q-1)))[/mm]
> Bn = 30.000
>  R = 4.058,41
>  q= 1,08375
>  n = ?
>  

In solchen Fällen nimmt man diese Formel:

n = [mm] \bruch{(In)A -(In)T_1}{(In)q} [/mm]


Viele Grüße
Josef

Bezug
                
Bezug
Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:58 Mi 23.02.2011
Autor: sax318

hallo,

achso, das finde ich super, dass es hier eine andere formel gibt.
aber..

n = Jahre = gefragt
q = Prozent = 1,08375
Aber was ist
In = 0,08375?
A = Annuität = 30.000 ?
T = tilgung = 4.058,54 ?
?

danke!

Bezug
                        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Mi 23.02.2011
Autor: Josef

Hallo,

> hallo,
>  
> achso, das finde ich super, dass es hier eine andere formel
> gibt.

Natürlich kannst du auch den allgemeine Ansatz nehmen:

[mm] 30.000*1,08375^n [/mm] - [mm] 4,058,54*\bruch{1,08375^n -1}{0,08375} [/mm] = 0


>  aber..
>  

die andere Formel geht schneller:

> n = Jahre = gefragt
>  q = Prozent = 1,08375
>  Aber was ist
>  In = 0,08375?
>  A = Annuität = 30.000 ?
>  T = tilgung = 4.058,54 ?
>  ?
>  

In der Aufgabenstellung ist die Annuität = 4.058,54
Die Schuldsumme beträgt 30.000
der Zinssatz beträgt 8,375 %
Jetzt muss die Tilgung ermittelt werden.

In der Annuität in Höhe von 4.058,54 sind Zinsen und Tilgung enthalten.

Die Zinsen kannst du berechnen:

30.000*0,08375 = 2.512,25

Nun kannst du die Tilgung ermitteln, indem du von der Annuität die Zinsen abziehst:

4.058,54 - 2.512,25 = 1.546,04

Die Tilgung beträgt also 1.546,04.

In die Formel eingesetzt:

n = [mm] \bruch{(In) 4.058,54 - (In) 1.546,04}{(In)1,08375} [/mm]

n = 11,9999....

n = 12



Beachte: In = natürlicher Logarithmus


Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]