matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikRentenrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Rentenrechnung
Rentenrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 So 05.07.2015
Autor: Mathics

Aufgabe
Architekt A. arbeitet immer jeweils drei Wochen im Büro und ist anschließend eine Woche auf der Baustelle. Die Fahrten zur Baustelle werden dabei von seiner Firma bezahlt, für die Fahrten ins Büro nutzt er das Auto auf eigene Kosten. Hierzu benötigt er genau eine Tankfüllung pro Woche. Diese kostet ihn in der ersten Woche 50 Euro, danach steigen die Benzinpreise wöchentlich um 0,5%. Gehen Sie davon aus, dass das Jahr genau 52 Wochen hat. Wie viel Geld hätte A. am Ende eines Jahres angespart, wenn er anstatt mit seinem Auto mit dem Fahrrad ins Büro fahren, und die dadurch wegfallenden wöchentlichen Benzinkosten jeweils am Ende der Woche auf ein extra eingerichtetes Konto mit einem Zinssatz von 3,5% p.a. einzahlen würde?

Hallo,

in unserer Lösung steht:

Ersparnis, wenn A. jede Woche im Büro arbeiten würde (Endwert nachschüssige wöchentliche, geometrisch wachsende Rente)

50 * [mm] \bruch{q^{52/52}-c^{52}}{q^{1/52}-c} [/mm] = 50 * [mm] \bruch{1,035-1,005^{52}}{1,035^{1/52}-1,005} [/mm] = 3009,19

Davon sind jeweils die Wochen abzuziehen, in denen A. auf der Baustelle arbeitet, insgesamt eine nachschüssige Rente, welche alle vier Wochen fällig ist (insgesamt 13 mal) und mit dem Faktor [mm] 1,005^4 [/mm] wächst. Abzuziehen ist daher:

[mm] (50*1,005^3) [/mm] * [mm] \bruch{1,035^{13*4/52}-1,005^{4*13}}{1,035^{4/52}-1,005^4} [/mm] = 745,94

Insgesamt ergibt sich ein Endwert von

K1= 3009,19 - 745,94 = 2252


Ich verstehe nicht so ganz wie man auf [mm] (50*1,005^3) [/mm] * [mm] \bruch{1,035^{13*4/52}-1,005^{4*13}}{1,035^{4/52}-1,005^4} [/mm] = 745,94
kommt. Wieso wird z.B. mit (50 * [mm] 1,005^3) [/mm] multipliziert und wieso ist im Nenner [mm] 1,035^{4/52}-1,005^4? [/mm]

        
Bezug
Rentenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Mo 06.07.2015
Autor: Staffan

Hallo,

> Architekt A. arbeitet immer jeweils drei Wochen im Büro
> und ist anschließend eine Woche auf der Baustelle. Die
> Fahrten zur Baustelle werden dabei von seiner Firma
> bezahlt, für die Fahrten ins Büro nutzt er das Auto auf
> eigene Kosten. Hierzu benötigt er genau eine Tankfüllung
> pro Woche. Diese kostet ihn in der ersten Woche 50 Euro,
> danach steigen die Benzinpreise wöchentlich um 0,5%. Gehen
> Sie davon aus, dass das Jahr genau 52 Wochen hat. Wie viel
> Geld hätte A. am Ende eines Jahres angespart, wenn er
> anstatt mit seinem Auto mit dem Fahrrad ins Büro fahren,
> und die dadurch wegfallenden wöchentlichen Benzinkosten
> jeweils am Ende der Woche auf ein extra eingerichtetes
> Konto mit einem Zinssatz von 3,5% p.a. einzahlen würde?
>  Hallo,
>  
> in unserer Lösung steht:
>  
> Ersparnis, wenn A. jede Woche im Büro arbeiten würde
> (Endwert nachschüssige wöchentliche, geometrisch
> wachsende Rente)
>  
> 50 * [mm]\bruch{q^{52/52}-c^{52}}{q^{1/52}-c}[/mm] = 50 *
> [mm]\bruch{1,035-1,005^{52}}{1,035^{1/52}-1,005}[/mm] = 3009,19
>  
> Davon sind jeweils die Wochen abzuziehen, in denen A. auf
> der Baustelle arbeitet, insgesamt eine nachschüssige
> Rente, welche alle vier Wochen fällig ist (insgesamt 13
> mal) und mit dem Faktor [mm]1,005^4[/mm] wächst. Abzuziehen ist
> daher:
>  
> [mm](50*1,005^3)[/mm] *
> [mm]\bruch{1,035^{13*4/52}-1,005^{4*13}}{1,035^{4/52}-1,005^4}[/mm]
> = 745,94
>  
> Insgesamt ergibt sich ein Endwert von
>  
> K1= 3009,19 - 745,94 = 2252
>  
>
> Ich verstehe nicht so ganz wie man auf [mm](50*1,005^3)[/mm] *
> [mm]\bruch{1,035^{13*4/52}-1,005^{4*13}}{1,035^{4/52}-1,005^4}[/mm]
> = 745,94
>  kommt. Wieso wird z.B. mit (50 * [mm]1,005^3)[/mm] multipliziert
> und wieso ist im Nenner [mm]1,035^{4/52}-1,005^4?[/mm]  


Abgestellt wird auf eine vierwöchige Betrachtung. Damit ist der Jahreszins darauf umzurechnen. Die Steigerung mit 0,5% findet wöchentlich statt, so daß bei der Vierwochenberechnung die vierte Potenz anzusetzen ist. Da der Ausgangspunkt des Benzinpreises 50 ist, hat es zum Ende der ersten vier Wochen eine dreimalige Steigerung gegeben.

Gruß
Staffan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]