matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikRentenberechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Finanzmathematik" - Rentenberechnung
Rentenberechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rentenberechnung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 07:46 Fr 19.05.2006
Autor: Izabela

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das Angebot einer Versicherung sieht die Einzahlung eines Betrages ab 100.000,-Euro vor. Das Kapital soll zunächst 6 Jahre lang zu 3,6% p.a. Zinseszins angelegt und dann zur Finanzierung einer Rente über eine bestimmte Laufzeit verwendet werden. Der Zinszuschlag erfolgt jeweils am Jahresende.
Welche Rente steht 25 Jahre lang jeweils am Monatsanfang zur Verfügung wenn 2.500.000 Euro eingezahlt wurden? Die Zinsen werden weiterhin am Jahresende zugeschlagen.

Meine Lösung:

250000= r*(1,036^300):(0,036)*(1):(1,036^299)

2500000=r*28,77706799

r=86874,73

Eine monatliche Rente von 86.874,73 Euro über einen Zeitraum von 25 Jahren hört sich für mich einfach zu hoch an..oder liege ich doch richtig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Rentenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Fr 19.05.2006
Autor: Sigrid

Hallo Isabella,

[willkommenmr]

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Das Angebot einer Versicherung sieht die Einzahlung eines
> Betrages ab 100.000,-Euro vor. Das Kapital soll zunächst 6
> Jahre lang zu 3,6% p.a. Zinseszins angelegt und dann zur
> Finanzierung einer Rente über eine bestimmte Laufzeit
> verwendet werden. Der Zinszuschlag erfolgt jeweils am
> Jahresende.
> Welche Rente steht 25 Jahre lang jeweils am Monatsanfang
> zur Verfügung wenn 2.500.000 Euro eingezahlt wurden? Die
> Zinsen werden weiterhin am Jahresende zugeschlagen.
>  Meine Lösung:
>  
> 250000= r*(1,036^300):(0,036)*(1):(1,036^299)
>  
> 2500000=r*28,77706799
>  
> r=86874,73

Wenn ich die Aufgabe richtig verstanden habe, wird das Kapital zunächst einmal 6 Jahre lang verzinst, ohne dass es Rentenzahlungen gibt. Diese 6 Jahre hast du nicht berücksichtigt.
Zum zweiten sind die Jahreszinsen 3,6%, die Zinsen für einen Monat sind damit 0,3%.

>  
> Eine monatliche Rente von 86.874,73 Euro über einen
> Zeitraum von 25 Jahren hört sich für mich einfach zu hoch
> an..oder liege ich doch richtig?

Mit deiner Skepsis hast du sicher recht.

Gruß
Sigrid


Bezug
                
Bezug
Rentenberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:56 So 21.05.2006
Autor: Izabela

Aufgabe
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Das Angebot einer Versicherung sieht die Einzahlung eines
> Betrages ab 100.000,-Euro vor. Das Kapital soll zunächst 6
> Jahre lang zu 3,6% p.a. Zinseszins angelegt und dann zur
> Finanzierung einer Rente über eine bestimmte Laufzeit
> verwendet werden. Der Zinszuschlag erfolgt jeweils am
> Jahresende.
> Welche Rente steht 25 Jahre lang jeweils am Monatsanfang
> zur Verfügung wenn 2.500.000 Euro eingezahlt wurden? Die
> Zinsen werden weiterhin am Jahresende zugeschlagen.


@Sigrid: Vielen Dank für Deinen Hinweis, allerdings komme ich immer noch zu keinem befriedigendem Ergebnis, denn:

[mm] 2.500.000*1,036^6=30.909.966,98 [/mm]

30.909.966,98= r*(1,003^300):(0,003)*(1):(1,003^299)

>  
> 30.909.966,98=r*334,33
>  
> r=92.452,54

Ist dieses Ergebnis richtig oder liege ich wieder daneben ???

Liebe Grüße
Izabela


Bezug
                        
Bezug
Rentenberechnung: Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 07:33 So 21.05.2006
Autor: Josef

Hallo Izabella,


> >
> > Das Angebot einer Versicherung sieht die Einzahlung eines
> > Betrages ab 100.000,-Euro vor. Das Kapital soll zunächst 6
> > Jahre lang zu 3,6% p.a. Zinseszins angelegt und dann zur
> > Finanzierung einer Rente über eine bestimmte Laufzeit
> > verwendet werden. Der Zinszuschlag erfolgt jeweils am
> > Jahresende.
> > Welche Rente steht 25 Jahre lang jeweils am Monatsanfang
> > zur Verfügung wenn 2.500.000 Euro eingezahlt wurden? Die
> > Zinsen werden weiterhin am Jahresende zugeschlagen.
>
> @Sigrid: Vielen Dank für Deinen Hinweis, allerdings komme
> ich immer noch zu keinem befriedigendem Ergebnis, denn:
>  
> [mm]2.500.000*1,036^6=30.909.966,98[/mm]

[notok]

Richtig ist:

[mm] 2.500.000*1,036^6 [/mm] = 3.090.996,70


>  
> 30.909.966,98= r*(1,003^300):(0,003)*(1):(1,003^299)
> >  

> > 30.909.966,98=r*334,33
>  >  
> > r=92.452,54
>  
> Ist dieses Ergebnis richtig oder liege ich wieder daneben
> ???
>  

[notok]


Nach 6 Jahren hast du also ein Anfangskapital für die monatlichen, vorschüssigen  Rentenzahlungen von 3.090.996,70 Euro. Von diesem Anfangskapital, das während der 25 Jahre mit 3,6 % Verzinsung angelegt ist, werden jeweils am Monatsanfang während dieser Laufzeit gleichbleibende Rentenbeträge abgehoben.

Die Renten werden mehrmals in einem Jahr gezahlt, also monatlich, vorschüssig. Hinsichtlich der Verzinsung der gezahlten Rentenraten werden die Zinsen einmal pro Jahr, und zwar nachschüssig, berechnet. Dieses Verfahren ist besonders realistisch, weil alle betriebswirtschaftlichen Probleme mit unterjährlichen Renten auf diesem Fall basieren. So handhaben i.d.R. die Bankinstitute die Zinsrechnungen. In der gestellten Aufgabe kann man dieses Verfahren auch schon aus der Angabe "jeweils am Monatsanfang" entnehmen. Auch der Satz " Die Zinsen werden weiterhin am Jahresende zugeschlagen" gibt den Hinsweis auf dieses Verfahren.

Der Ansatz muss daher lauten:

[mm] 3.090.996,70*1,036^{25} [/mm] -[mm]R*[12+\bruch{0,036}{2}*13]*\bruch{1,036^{25}-1}{0,036} = 0[/mm]

R = 15.496,51


Falls du weitere Fragen hast, melde dich dann bitte. Vielleicht kann ich sie dir dann beantworten.

Viele Grüße
Josef

Bezug
                                
Bezug
Rentenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Sa 10.10.2009
Autor: vibo

Hallo Josef,

bist du dir sicher, dass der erste Teil deiner Formel stimmt? Schließlich wird das übrige Kapital jährlich verzinst, nicht aber das Gesamtkapital über den gesamten Zeitraum von 25 Jahren...! D.h. die gutgeschriebenen Zinsen nehmen automatisch von Jahr zu Jahr ab. Oder habe ich einen Denkfehler?

VG, Vibo

Bezug
                                        
Bezug
Rentenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Sa 10.10.2009
Autor: angela.h.b.


> bist du dir sicher, dass der erste Teil deiner Formel
> stimmt? Schließlich wird das übrige Kapital jährlich
> verzinst, nicht aber das Gesamtkapital über den gesamten
> Zeitraum von 25 Jahren...! D.h. die gutgeschriebenen Zinsen
> nehmen automatisch von Jahr zu Jahr ab. Oder habe ich einen
> Denkfehler?

Hallo,

ich halte Josefs Ansatz $ [mm] 3.090.996,70\cdot{}1,036^{25} [/mm] $ -$ [mm] R\cdot{}[12+\bruch{0,036}{2}\cdot{}13]\cdot{}\bruch{1,036^{25}-1}{0,036} [/mm] = 0 $ für richtig:


Man möchte ja wissen, welcher Betrag R in der angegebenen Weise 25 Jahre lang ausgezahlt werden muß, damit diese Zahlungen ebensoviel wert sind, wie das Geld es wäre,
legte man es am Tag 0 auf ein Sparbuch und ließe es dort 25 Jahre liegen. [mm] (3.090.996,70*1.036^{25}). [/mm]

Also ist der Gedanke:   [mm] 3.090.996,70*1.036^{25}= [/mm] Wert der Zahlungen

Der zweite Teil in Josefs Formel ist der Wert der Zahlungen, aufgezinst auf  die 25 Jahre.

Dazu wurde zunächst berechnet, durch welchen Betrag am Jahresende die vorschüssige, monatliche Zahlung von R zu ersetzen wäre [mm] (R\cdot{}[12+\bruch{0,036}{2}\cdot{}13]\cdot{}), [/mm] und dann wurden diese Ersatzjahreszahlungen aufgezinst auf den zeitraum von 25 Jahren.

Gruß v. Angela





Bezug
                                                
Bezug
Rentenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Sa 10.10.2009
Autor: vibo

Danke! :o)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]