matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRelationen hoch Tilde
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Relationen hoch Tilde
Relationen hoch Tilde < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen hoch Tilde: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Di 12.04.2011
Autor: kushkush

Aufgabe
Es wird definiert: $x [mm] \sim [/mm] y $ auf [mm] $\b{Z}$ [/mm]  als x-y durch 3 teilbar.

a) Man zeige, dass es sich um eine Äquivalenzrelation handelt.
b) Man untersuche, ob [mm] $\tilde{\b{Z}}= \{\tilde{1}, \tilde{5}, \tilde{9} \}$ [/mm] in a)


Hallo,


a)

Reflexivität:  $x-x=0 [mm] \Rightarrow [/mm] 3|0 [mm] \Rightarrow x\sim [/mm] x$

Symmetrie: $x [mm] \sim [/mm] y = x-y [mm] \Rightarrow [/mm] 3| x-y [mm] \gdw [/mm] 3|y-x = y [mm] \sim [/mm] x$


Trans: [mm] $x\sim [/mm] y [mm] \wedge [/mm] y [mm] \sim [/mm] z [mm] \gdw [/mm] 3|x-y  [mm] \wedge [/mm] 3|y-z [mm] \Rightarrow [/mm] 3|y-x [mm] \Rightarrow [/mm] 3|x-z [mm] \gdw [/mm] x [mm] \sim [/mm] z$

Richtig so?

b) Was bedeutet [mm] $\b{Z}$ [/mm] hoch Tilde?



Ich habe diese Fragen in keinem anderen Forum gestellt.



Danke und Gruss
kushkush

        
Bezug
Relationen hoch Tilde: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Di 12.04.2011
Autor: kamaleonti

Moin kushkush,
> Es wird definiert: [mm]x \sim y[/mm] auf [mm]\b{Z}[/mm]  als x-y durch 3
> teilbar.
>  
> a) Man zeige, dass es sich um eine Äquivalenzrelation
> handelt.
>  b) Man untersuche, ob [mm]\tilde{\b{Z}}= \{\tilde{1}, \tilde{5}, \tilde{9} \}[/mm]

ob was ...?

>  
> Hallo,
>  
>
> a)
>
> Reflexivität:  [mm]x-x=0 \Rightarrow 3|0 \Rightarrow x\sim x[/mm]
>  
> Symmetrie: [mm]x \sim y = x-y \Rightarrow 3| x-y \gdw 3|y-x = y \sim x[/mm]

Du meinst wohl das richtige. Aber was du mit x [mm] \sim [/mm] y = x-y meinst, verstehe ich nicht. Es soll wohl x [mm] \sim [/mm] y [mm] \gdw [/mm] 3|x-y heißen.

>  
>  
>
> Trans: [mm]x\sim y \wedge y \sim z \gdw 3|x-y \wedge 3|y-z \Rightarrow 3|y-x \Rightarrow 3|x-z \gdw x \sim z[/mm]

Das sollte noch deutlicher gemacht werden:
3|x-y [mm] \wedge [/mm] 3|y-z [mm] \Rightarrow [/mm] 3|(x-y)+(y-z) [mm] \gdw [/mm] 3|x-z [mm] \gdw x\sim [/mm] z

>  
> Richtig so?
>
> b) Was bedeutet [mm]\b{Z}[/mm] hoch Tilde?

Bitte vervollständige erstmal die Aufgabenstellung. ;-)

>
>
>
> Ich habe diese Fragen in keinem anderen Forum gestellt.
>  
>
>
> Danke und Gruss
>  kushkush

LG

Bezug
                
Bezug
Relationen hoch Tilde: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 Di 12.04.2011
Autor: kamaleonti


> Moin kushkush,
>  > Es wird definiert: [mm]x \sim y[/mm] auf [mm]\b{Z}[/mm]  als x-y durch 3

> > teilbar.
>  >  
> > a) Man zeige, dass es sich um eine Äquivalenzrelation
> > handelt.
>  >  b) Man untersuche, ob [mm]\tilde{\b{Z}}= \{\tilde{1}, \tilde{5}, \tilde{9} \}[/mm]
>  
> ob was ...?

Das fehlt wohl doch nichts.

>  >  
> > Hallo,
>  >  
> >
> > a)
> >
> > Reflexivität:  [mm]x-x=0 \Rightarrow 3|0 \Rightarrow x\sim x[/mm]
>  
> >  

> > Symmetrie: [mm]x \sim y = x-y \Rightarrow 3| x-y \gdw 3|y-x = y \sim x[/mm]
>  
> Du meinst wohl das richtige. Aber was du mit x [mm]\sim[/mm] y = x-y
> meinst, verstehe ich nicht. Es soll wohl x [mm]\sim[/mm] y [mm]\gdw[/mm]
> 3|x-y heißen.
>  >  
> >  

> >
> > Trans: [mm]x\sim y \wedge y \sim z \gdw 3|x-y \wedge 3|y-z \Rightarrow 3|y-x \Rightarrow 3|x-z \gdw x \sim z[/mm]
>  
> Das sollte noch deutlicher gemacht werden:
>  3|x-y [mm]\wedge[/mm] 3|y-z [mm]\Rightarrow[/mm] 3|(x-y)+(y-z) [mm]\gdw[/mm] 3|x-z
> [mm]\gdw x\sim[/mm] z
>  >  
> > Richtig so?
> >
> > b) Was bedeutet [mm]\b{Z}[/mm] hoch Tilde?
> Bitte vervollständige erstmal die Aufgabenstellung.

Vermutlich handelt es sich dabei um die Menge der Äquivalenzklassen.
Dann wäre also zu zeigen, ob die angebenen Äquivalenzklassen alle sind

>  >

> >
> >
> > Ich habe diese Fragen in keinem anderen Forum gestellt.
>  >  
> >
> >
> > Danke und Gruss
>  >  kushkush
> LG

LG

Bezug
                
Bezug
Relationen hoch Tilde: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Di 12.04.2011
Autor: kushkush

Hallo kamaleonti,


> ob was...?

Es steht: "Man untersuche, ob [mm] $\tilde{\b{Z}}= \{\tilde{1}, \tilde{5}, \tilde{9} \}$ [/mm] in a) "

> Korrektur

Danke!



> LG

Gruss




kushkush

Bezug
                        
Bezug
Relationen hoch Tilde: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Di 12.04.2011
Autor: kamaleonti

Hallo kushkush,
> Hallo kamaleonti,
>  
>
> > ob was...?
>
> Es steht: "Man untersuche, ob [mm]\tilde{\b{Z}}= \{\tilde{1}, \tilde{5}, \tilde{9} \}[/mm]
> in a) "

Siehe Mitteilung.

>
> > Korrektur
>
> Danke!
>  
>
>
> > LG
>  Gruss
>  
>
>
>
> kushkush

LG

Bezug
                                
Bezug
Relationen hoch Tilde: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 Di 12.04.2011
Autor: kushkush

Hallo kamaleonti,


wenn man [mm] $\IZ \backslash \IZ_{3}$ [/mm] betrachtet, gibt es 3 Restklassenringe: $0~ mod~ 3,1~mod~3~ und ~2~mod~3 $

die dazugehörigen Äquivalenzklassen sind : [mm] $\left[0 \right]=\{-3...0,3,6,9..\}$, $\left[1 \right]=\{...-2,1,4,7,10... \}$,$\left[2 \right]= \{...,-1,2,5,8... \}$ [/mm]

und 9, 1 und 5 liegen da ja jeweils in einer Äquivalenzklasse drin, also ist die Antwort auf die Frage "ja".

Richtig?


> LG

Danke



Gruss
kushkush



Bezug
                                        
Bezug
Relationen hoch Tilde: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Mi 13.04.2011
Autor: kamaleonti


> Hallo kamaleonti,
>
>
> wenn man [mm]\IZ \backslash \IZ_{3}[/mm] betrachtet, gibt es 3
> Restklassenringe: [mm]0~ mod~ 3,1~mod~3~ und ~2~mod~3[/mm]

?Du meinst wohl bzgl der Relation gibt es die drei Restklassen [0],[1],[2]

>  
> die dazugehörigen Äquivalenzklassen sind : [mm]\left[0 \right]=\{-3...0,3,6,9..\}[/mm],
> [mm]\left[1 \right]=\{...-2,1,4,7,10... \}[/mm],[mm]\left[2 \right]= \{...,-1,2,5,8... \}[/mm]
>  
> und 9, 1 und 5 liegen da ja jeweils in einer
> Äquivalenzklasse drin, also ist die Antwort auf die Frage
> "ja".

[ok]

>
> Richtig?
>
>
> > LG
>  
> Danke
>  
>
>
> Gruss
>  kushkush
>  
>  

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]