matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesRelationen: Anzahl Elemente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Relationen: Anzahl Elemente
Relationen: Anzahl Elemente < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Anzahl Elemente: Reicht ein Element?
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 26.02.2016
Autor: Hawallan

Aufgabe
R = {(a,b) [mm] \in \IN+\times \IN+ [/mm] | ggT(a,b) = 1 }
Überprüfung auf die Eigenschaften einer Äquivalenzrelation.


Die Elemente der Relation ergeben sich aus dem Kreuzprodukt der natürlichen positiven Zahlen mit den natürlichen positiven Zahlen, wobei a und b als größten gemeinsamen Teiler 1 haben. Für (1,2), (2,3),(1,3) mag das z.B. gelten. (1,2) ist symmetrisch, da die Reihenfolge beim ggT keine Rolle spielt. Die Transitivität ist für folgende Paare auch gegeben: (1,2),(2,3). Da 1 und 2 den ggT 1 haben und das auch für 1 und 3 gilt wäre hier die Bedingung für Transitivität erfüllt. Reflexiv ist aber nur folgendes Element aus [mm] \IN \times \IN: [/mm] (1,1). (1,1) ist also reflexiv.  
Mein Problem ist folgendes:

In der Lösung zu dieser Aufgabe steht, dass diese Relation nicht reflexiv ist, da ein Element a als ggT nicht nur 1 hat sondern auch sich selbst. Also sei diese Relation nicht reflexiv. Nach meinem Verständnis muss diese Eigenschaft allerdings nicht für alle Elemente sondern nur für mindestens ein Element gelten, welches ja mit (1,1) gegeben wäre. (1,1) ist aber das einzigste Element des Kreuzprodukts aus [mm] \IN \times \IN [/mm] das die Reflexivitätsbedingung erfüllt. Kann ich dann sagen, dass für (1,1) auch die symmetrie-und transitivitäts-Bedingungen erfüllt sind und die Relation somit eine Äquivalenzrelation ist, aber eben nur dieses eine Element (1,1) enthält?
In der Lösung zu dieser Aufgabe steht, dass die Relation nicht transitiv sei, da ggT(2,3) = 1 und ggT(3,4)=1 aber ggT(2,4) = 2 und 2 != 1. Für (1,2),(2,3) wäre ggT(1,2)=1 und ggT(2,3) =1 und ggT(1,3) = 1. Daher wäre doch die Transitivität gegeben. Die Reflexivität ist aber wie bereits erwähnt nur für (1,1) gegeben. Also nochmal die Frage: Wieso ist diese Relation keine Äquivalenzrelation, die nur das Element (1,1) enthält? Bzw. ist sie das nicht, weil (1,1) nicht symmetrisch bzw. transitiv ist? Wenn ja wieso, das verstehe ich nicht ganz.

Bitte um Hilfe und um Entschuldigung für den langen Post. Ich wüsste nicht wie ich mich hier hätte kürzer fassen können.

Mfg,

Hawallan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relationen: Anzahl Elemente: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Fr 26.02.2016
Autor: angela.h.b.


> R = [mm] \{(a,b) \in \IN+\times \IN+ | ggT(a,b) = 1 \} [/mm]
>  Überprüfung auf die Eigenschaften einer
> Äquivalenzrelation.

Hallo,

[willkommenmr].

>  
> Die Elemente der Relation ergeben sich aus dem Kreuzprodukt
> der natürlichen positiven Zahlen mit den natürlichen
> positiven Zahlen, wobei a und b als größten gemeinsamen
> Teiler 1 haben. Für (1,2), (2,3),(1,3) mag das z.B.
> gelten. (1,2) ist symmetrisch,

Stop!
Symmetrie ist eine Eigenschaft von Relationen, nicht von einzelnen Elementen der Relation.

Eine Relation heißt symmetrisch, wenn für sämtliche Elemente (a,b) der Relation auch das Element (b,a) in ihr enthalten ist.
Das ist bei dieser Relation der Fall,
denn wenn [mm] (a,b)\in [/mm] R, also ggT(a,b)=1, dann ist natürlich auch ggT(b,a)=1, woraus folgt, daß [mm] (b,a)\in [/mm] R.

> da die Reihenfolge beim ggT
> keine Rolle spielt. Die Transitivität ist für folgende
> Paare auch gegeben:

auch die Transitivität ist eine Eigenschaft der Relation, welche besagt:

wenn (a,b) und (b,c) in R sind, dann ist auch (a,c) in R.

> (1,2),(2,3). Da 1 und 2 den ggT 1 haben
> und das auch für 1 und 3 gilt wäre hier die Bedingung
> für Transitivität erfüllt.

Aber für (2,3) und (2,4) läuft das dann gar nicht gut...
Die Relation ist offenbar nicht transitiv.


> Reflexiv ist aber nur
> folgendes Element aus [mm]\IN \times \IN:[/mm] (1,1). (1,1) ist also
> reflexiv.  

Auch hier: Elemente können nicht reflexiv sein.
Obige Relation wäre reflexiv, wenn für jedes [mm] a\in \IN^{+} [/mm] das Paar (a,a) in der Relation wäre.
Offenbar ist aber (2,2) nicht in der Relation.
Also ist die Relation nicht reflexiv.


> Mein Problem ist folgendes:
>  
> In der Lösung zu dieser Aufgabe steht, dass diese Relation
> nicht reflexiv ist, da ein Element a als ggT nicht nur 1
> hat sondern auch sich selbst. Also sei diese Relation nicht
> reflexiv. Nach meinem Verständnis muss diese Eigenschaft
> allerdings nicht für alle Elemente sondern nur für
> mindestens ein Element gelten,

Da täuschst Du Dich.
In dem Moment, in welchem man Zweifel hat, befragt man sinnvollerweise die Definition.
Sie teilt mit (abgekupfert bei wikipedia):

Eine Äquivalenzrelation auf einer Menge M ist eine Teilmenge R [mm] \subseteq [/mm] M [mm] \times [/mm] M, welche folgende Bedingungen erfüllt:

Reflexivität
    Für alle [mm] a\in [/mm] M ist [mm] (a,a)\in [/mm] R.
Symmetrie
    Für alle [mm] a,b\in [/mm] M, für die [mm] (a,b)\in [/mm] R gilt, ist auch (b,a) [mm] \in [/mm] R.
Transitivität
    Für alle a,b,c [mm] \in [/mm] M mit (a,b) [mm] \in [/mm] R und (b,c) [mm] \in [/mm] R gilt, dass auch (a,c) [mm] \in [/mm] R.


Wir halten fest: die Relation, mit der Du Dich beschäftigen sollst, ist symmetrisch, aber weder transitiv noch symmetrisch.
Also ist es keine Äquivalenzrelation.

LG Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]