matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreRelationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - Relationen
Relationen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Korrektur
Status: (Frage) überfällig Status 
Datum: 17:46 Di 04.11.2008
Autor: pathethic

Aufgabe
Die Relationen R, S,T [mm] \subseteq \IN [/mm] x [mm] \IN [/mm] sollen auf folgende Eigenschaften überprüft werden: Transitivät, Symmetrie, Antisymmetrie.

Positive Antwort: Kurze Begründung (in der Regel reicht ein Satz)
Negative Antwort: Konkretes Gegenbeispiel als Beleg

m R n [mm] \gdw [/mm] jeder Primteiler von m ist auch Teiler von n
m S n [mm] \gdw [/mm] m ist ein echter Teil von n, d.h. m | n und m [mm] \not= [/mm] n
m T n [mm] \gdw [/mm] die Summe aller Primzahlen, die m bzw. n teilen, sind gleich (jeder Primteiler wird nur einzeln gezählt)

m R n

Transitiv (positiv): m R n [mm] \wedge [/mm] n R o [mm] \to [/mm] m R o
Ja, denn wenn die Primteiler von n o teilen, muss o ein Vielfaches von dem selber Teiler sein, der auch m teilt.

Symmetrie (negativ): m R n -> n R m
Gegenbeispiel: (26, 130) Nicht jeder Primteiler von 130 (2,13,5) ist Teiler von 26.

Antisymmetrie (positiv):
Wenn m = n, dann ist m R n -> n R m



m S n

Transitiv (negativ): (m | n [mm] \wedge [/mm] m [mm] \not= [/mm] n) [mm] \wedge [/mm] (n | o [mm] \wedge [/mm] n [mm] \not= [/mm] o) [mm] \to [/mm] (m | o [mm] \wedge [/mm] m [mm] \not= [/mm] o)
Gegenbeispiel: (10,100,10) 100 teilt-nicht 10, aber (10,10,10) nicht möglich, da m [mm] \not= [/mm] n, n [mm] \not= [/mm] o und m [mm] \not= [/mm] o

Symmetrie (negativ):
Gegenbeispiel: 5 | 10 ist ein echter Teiler, m [mm] S^{-1} [/mm] n : 10 teilt nicht 5, es ist kein echter Teiler

Antisymmetrie (negativ)
Gegenbeispiel: 10 | 10 ist ein echter Teiler, m [mm] S^{-1} [/mm] n auch, aber Widerspruch mit der Relationsbedingung von S m [mm] \not= [/mm] n



m T n

Transitivität (positiv)
Ja, bewiesen durch Primfaktorzerlegung,  wenn m und n aus den selben Primfaktoren bestehen, dann muss das auch für n und o der Fall sein, somit reiht sich m und o hier ein. Ein Primfaktor bei n oder m mehr, würde sich mit der Aussage über m und n überschneiden.

Symmetrie (positiv)
Ja, denn die Summe bleibt gleich, da kein Faktor mehr als beim anderen Element vorhanden sein darf.

Antisymmetrie (negativ)
Gegenbeispiel: (26, 52), 26 = 13 * 2 und 52 = 13 * 2 * 2 : Bei beiden beträgt die Primfaktorensumme: 14, obwohl m [mm] \not= [/mm] n


        
Bezug
Relationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 08.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]