matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRelationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Relationen
Relationen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Hilfe
Status: (Frage) beantwortet Status 
Datum: 14:51 Do 30.12.2004
Autor: SusPie6

Hi ihr,

ich nutze gerade die freie Zeit, um mich für die Prüfungen im Januar und Februar vorzubereiten. Dabei wiederhole ich die Übungsaufgaben, welche wir wöchentlich bekommen haben. Leider komme ich teilweise nicht weiter beziehungsweise bin ich mir nicht sicher, ob meine Gedankengänge richtig sind. Über eure Hilfe würde ich mich wahnsinnig doll freuen.

1. Aufgabe:

Schreiben Sie formal
a) Es gibt höchstens ein x [mm] \in [/mm] M, für das die Aussage p gilt.
b) Es gibt genau ein x [mm] \in [/mm] M, für das die Aussage p gilt.

Ich habe folgende Lösungen:
a) [mm] \exists [/mm] x [mm] \in [/mm] M: [mm] \forall [/mm] y [mm] \in [/mm] M \ {x} : (nicht) p(y)

b) [mm] \exists [/mm] x [mm] \in [/mm] M: p(x) [mm] \wedge \forall [/mm] y [mm] \in [/mm] M \ {x} : (nicht) p(y)

Geht das denn so???


2. Aufgabe:

Zeigen Sie, dass die Teilerrelation eine Ordnungsrelation ist.

Dazu:
m/n : [mm] \gdw \exists [/mm] k [mm] \in \IN [/mm] : n=km
(Dies ist ja eine Ordnungsrelation auf den natürlichen Zahlenbereich.)

i) Reflexivität: m/m [mm] \gdw \exists [/mm] 1 [mm] \in \IN [/mm] : m= 1*m

ii) Antisymmetrie: m/n [mm] \wedge [/mm] n/m [mm] \Rightarrow [/mm] m=n
                            m/n [mm] \gdw \exists [/mm] k1 [mm] \in \IN [/mm] : n=k1m
                            n/m [mm] \gdw \exists [/mm] k2 [mm] \in \IN [/mm] : m=k2n
   n=k1(k2n)=(k1k2)n [mm] \Rightarrow [/mm] k1=k2=1 [mm] \Rightarrow [/mm] n=1*m
                                                                                        m=1*n
                                                                                        m=n

iii) Transitivität: m/n [mm] \wedge [/mm] n/p [mm] \Rightarrow [/mm] m/p
                         m/n [mm] \gdw \exists [/mm] k1 [mm] \in \IN [/mm] : n=k1m
                         n/p [mm] \gdw \exists [/mm] k2 [mm] \in \IN [/mm] : p=k2n
                         p=k2(k1m)=(k1k2)m
                         m/p.

Und???


3. Aufgabe:

Auf [mm] \IZ [/mm] x ( [mm] \IZ \backslash \{ 0 \} [/mm] sei die Relation [mm] \sim [/mm] definiert durch (a,b) [mm] \sim [/mm] (c,d) : [mm] \gdw [/mm] ad=bc. Zeigen Sie, dass [mm] \sim [/mm] eine Äquivalenzrelation ist.

Dazu habe ich leider keine Ansätze, aber ich wäre euch sehr dankbar, wenn ihr mir da weiter helfen könntet.

Vielen Dank im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Do 30.12.2004
Autor: moudi

Zur  1. Aufgabe: Das ist ok.

Zur 3. Aufgabe: Das ist gerade die Aequivalenz von Brüchen wenn man
(a,b) als Bruch  [mm]\frac{a}{b}[/mm] interpretiert. Die Aequivalenzklassen
sind dann diejenigen Mengen von Brüche, die die gleiche rationale Zahl liefern.

Mit dieser Interpretation im Kopf sollte es eigentlich nicht  so schwierig sein.

mfg Moudi

Bezug
        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Do 30.12.2004
Autor: maria

2.Aufgabe:das ist richtig
3.Aufgabe:
(a,b) mit [mm] b\not=0 [/mm]
(c,d) mit [mm] d\not=0 [/mm]

[mm] \underbrace{(a,b) }_{=x}\sim \underbrace{(c,d)}_{=y}: \gdw [/mm] ad=bc

1. Reflexivität: [mm] x\sim [/mm] x: [mm] (a,b)\sim(a,b):\Rightarrow [/mm] ab=ab
2. Symmetrie: [mm] x\sim [/mm] y [mm] \Rightarrow y\sim [/mm] x: [mm] (a,b)\sim [/mm] (c,d) [mm] \gdw [/mm] ad=bc
                                            [mm] \gdw [/mm]  cb=ad
                                            [mm] \gdw (c,d)\sim [/mm] (a,b)
3.Transitivität: [mm] (a,b)\sim [/mm] (c,d) und [mm] (c,d)\sim\underbrace{(e,f)}_{=z...f\not=0} \Rightarrow (a,b)\sim [/mm] (e,f)
                        1.ad=bc  [mm] |*f(\not=0) [/mm]
                        2.cf=de   [mm] |*b(\not=0) [/mm]
                   [mm] \Rightarrow [/mm] 1.adf=bcf
                      2.bcf=deb
                    [mm] \Rightarrow adf=deb|/d(\not=0) \Rightarrow [/mm]  af=eb  [mm] \Rightarrow (a,b)\sim [/mm] (e,f)
Das müsste logisch sein, oder?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]