matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreRelationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Naive Mengenlehre" - Relationen
Relationen < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relationen: Verständnisfrage zu Relationen
Status: (Frage) beantwortet Status 
Datum: 14:39 Fr 14.02.2014
Autor: FiftyCent

Aufgabe
Ist die Relation symmetrisch?
[mm] $\mathbb{A}=\{(x,y)|x,y\in\mathbb{Z}\, , x+y=1\} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt!

Laut Definition ist eine Relation symmetrisch, wenn [mm] $\forall\,x,y\in\mathbb{X}\; [/mm] : [mm] \; (x\sim y\Rightarrow y\sim [/mm] x)$. Ich verstehe die Relation aus dieser Definition so, dass [mm] \textbf{für alle} [/mm] $x,y$ aus einer bestimmten Menge die angegebenen Relation gilt. Wenn ich mir aber jetzt zwei beliebige Zahlen aus dieser Menge auswähle ($x,y$ sind Elemente der ganzen Zahlen), z.B. $x=4$ und $y=5$, dann ergibt dieses [mm] $4+5\ne [/mm] 1$. Der umgekehrte Fall [mm] $5+4\ne [/mm] 1$ kommt ebenfalls nicht hin. Nun gibt es aber ja auch Elemente aus dieser Menge, für die diese Relation stimmt, z.B. $x=0$ und $y=1$, dann ergibt $0+1=1$ und $1+0=1$. Die Relation stimmt dann doch nur für einen Teilbereich aber nicht [mm] \textbf{für alle} $x,y\in\mathbb{Z}$!? [/mm] Daher habe ich diese Frage nach der Symmetrie der Relation mit Nein beantwortet, was aber falsch war? Was ist an meiner Überlegung falsch? Vielen Dank für die Hilfe!

        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Fr 14.02.2014
Autor: MaslanyFanclub

Hallo,

eine Relation ist eine Menge.
Als solche kann sie weder wahr noch falsch sein.
Die Menge A ist die Relation. Sie enthält alle Elemente $x,y [mm] \in \mathbb [/mm] Z$ die die definierende Gleichung x+y=1 erfüllen.
Damit ist z.B. [mm] $(4,5)\notin [/mm] A$, also ist das Paar (4,5) hier irrelevant.



Bezug
        
Bezug
Relationen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Sa 15.02.2014
Autor: fred97

Ich glaube, dass Du das


      $ [mm] \forall\,x,y\in\mathbb{X}\; [/mm] : [mm] \; (x\sim y\Rightarrow y\sim [/mm] x) $

nicht richtig verstehst. Ich "übersetze mal. Obiges bedeutet:


Für alle [mm] x,y\in\mathbb{X} [/mm] gilt: wenn  [mm] x\sim [/mm] y, so auch [mm] y\sim [/mm] x

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]