matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekusiv definierte Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Rekusiv definierte Folgen
Rekusiv definierte Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekusiv definierte Folgen: Hinweise
Status: (Frage) beantwortet Status 
Datum: 18:52 So 12.06.2016
Autor: hippias

Aufgabe
Methoden zur expliziten Darstellung einer rekursiv definierten Folge

Hallo Forum,
ich habe für die durch [mm] $\alpha_{1,n}=1$ [/mm] und [mm] $\alpha_{k,n+1}= \alpha_{k-1,n}+k\alpha_{k,n}$ [/mm] rekursiv definierte Folge mit einigem Aufwand eine explizite Darstellung gefunden.

Ich würde gerne fragen, ob jemand allgemeine Methoden zur Bestimmung einer expliziten Darstellung solcher $2$-dimensionaler rekursiv definierter Folgen kennt.



        
Bezug
Rekusiv definierte Folgen: Umfrage?
Status: (Antwort) fertig Status 
Datum: 09:28 Mo 13.06.2016
Autor: Ladon

Hallo hippias,

die Frage würde sich evtl. als Umfrage zum Sammeln der Verfahren lohnen.
Mir fallen mindestens 2 Verfahren ein, mit denen man eine geschlossene Form berechnen kann. Es ist allerdings unklar, aus welchem Zahlenbereich $n$ und $k$ stammen!
Zudem frage ich mich, ob du nicht noch eine weitere Bedingung an [mm] $\alpha_{k,1}$ [/mm] stellst.
Gegeben ist $ [mm] \alpha_{1,n}=1 [/mm] $ und $ [mm] \alpha_{k,n+1}= \alpha_{k-1,n}+k\alpha_{k,n} [/mm] $ bzw. [mm] $\alpha_{k,n}= \alpha_{k-1,n-1}+k\alpha_{k,n-1}$ [/mm] (x).

1. Möglichkeit:
Trivial, aber effektiv. Man ratet die geschlossene Form einer rekursiv definierten Folge einfach durch scharfes hinsehen. Hier ist das aber sicherlich keine realistische Möglichkeit. ;-)

2. Möglichkeit:
[]Differenzenrechnung ist das Stichwort! Darüber solltest du dich informieren. Da ich dies bisher nur auf rekursive Folgen mit einem Parameter angewendet habe, ist die folgende Ausführung unvollständig. Und sollte mit kritischem Auge gelesen werden.
Man startet häufig mit der Definition einer Funktion [mm] $f(x,y)=\sum_{0
[mm] $$(1-xy-y)f(x,y)=(1-xy-y)\sum_{0 Umgruppieren...

[mm] $$\sum_{1 (Ich hoffe, dass ich keine Indexfehler fabriziert habe. Für die rekursive Folge [mm] $\alpha_{k,n}=\alpha_{k-1,n-1}+\alpha_{k,n-1}$ [/mm] wäre obige Umformung sicherlich hilfreich.)

Leider bringt uns das herzlich wenig, denn wir brauchen etwas der Form [mm] $\alpha_{k,n}-\alpha_{k-1,n-1}-k\alpha_{k,n-1}$. [/mm] Um das $k$ mit einzubringen, muss man Umformungsschritte durchführen, bei denen man die diskrete Ableitung einbindet. Das ist aber nur eine Vermutung. Das diskrete Analogon im Mehrdimensionalen habe ich allerdings noch nicht hinreichend studiert. Sicherlich gibt es hier im Forum Personen, die sich diesbezüglich besser auskennen.
Ich wäre zudem für Hinweise auf Fehler dankbar, insbesondere bzgl. des Umformungsschritts. :-)

Generell möchte ich mit diesem Post jedoch auf die Differenzenrechnung aufmerksam machen, die man häufig für solche Aufgaben nutzen kann.

Bezug
                
Bezug
Rekusiv definierte Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Mo 13.06.2016
Autor: hippias

Danke für den Hinweis auf das Thema Differenzenrechnung (und erzeugende Funktionen). Ich werde schauen, was ich dazu finde.

Übrigens sind mir seid gestern zwei Dinge aufgefallen:
1. Die von mir so mühevoll gefundene explizite Darstellung brauche ich gar nicht. Ich hätte lieber eine explizite Darstellung von [mm] $\alpha_{n+1,k}= \alpha_{n,k-1}-n\alpha_{n,k}$. [/mm]
2. Beide Rekursionsgleichung sind wohlbekannt unter dem Namen Stirling-Zahlen 1. und 2. Art, zu denen es eine Vielzahl von Informationen gibt.

Wenn ich schon Mühe darauf verwendet habe, längst Bekanntes herauszufinden, so habe ich doch den Trost, dass ich mich wenigstens nicht verrechnet habe.

Jedenfalls ist das Thema Differenzgleichungen von nicht geringem Interesse.

Bezug
        
Bezug
Rekusiv definierte Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Di 14.06.2016
Autor: Ladon

Ach ja, die Stirling Zahlen. :-)
Dazu fällt mir ein Beweis ein. Für mich sind die Stirling Zahlen nämlich [mm] $\alpha_{n,k}=\mbox{Anzahl}(\{\mbox{k-Partitionen von }\{1,...,n\}\})$ [/mm] für alle [mm] $n,k\in\IN_{\ge1}$. [/mm]
Jetzt müssen wir nur zeigen, dass meine Behauptung mit der rekursiven Formel
[mm] $$\alpha_{k,n+1}= \alpha_{k-1,n}+k\alpha_{k,n} [/mm] $$
übereinstimmt. Bzw. wir zeigen eigentlich
[mm] $$\alpha_{k,n}=\alpha_{k-1,n-1}+k\alpha_{k,n-1}$$ [/mm]

Beweis
Es sei [mm] $\{M_1,...,M_k\}$ [/mm] eine k-Partition von [mm] $\{1,...,n\}$. [/mm] Wir untersuchen 2 Fälle:
1.) [mm] $\{n\}=M_i$ [/mm] für ein $i$.
Dann ist [mm] $\{M_1,...,M_{i-1},M_{i+1},...,M_k\}$ [/mm] eine $(k-1)$-Partition von [mm] $\{1,...,n-1\}$. [/mm]
2.) [mm] $n\in M_i$ [/mm] für ein $i$, aber [mm] $\{n\}\neq M_i$. [/mm]
Dann ist [mm] $\{M_1,...,M_i\setminus\{n\},M_{i+1},...,M_k\}$ [/mm] ist eine $k$-Partition von [mm] $\{1,...,n-1\}$. [/mm]

Da es $k$ Möglichkeiten gibt, das n wieder einzusortieren, erhalten wir mit 1.) und 2.)
[mm] $$\alpha_{k,n}=\alpha_{k-1,n-1}+k\cdot \alpha_{k,n-1}.$$ [/mm]
Außerdem ist [mm] $\alpha_{1,n}=\mbox{Anzahl}(\{\mbox{1-Partitionen von }\{1,...,n\}\})=\mbox{Anzahl}(\{\{1,...,n\}\})=1$. $\square$ [/mm]

Der Nachteil obiger Ausführungen ist jedoch, dass es nicht einsichtig ist, wie man auf die Behauptung [mm] $\alpha_{n,k}=\mbox{Anzahl}(\{\mbox{k-Partitionen von }\{1,...,n\}\})$ [/mm] für alle [mm] $n,k\in\IN_{\ge1}$ [/mm] kommt.

Liebe Grüße
Ladon

Bezug
                
Bezug
Rekusiv definierte Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:24 Mi 15.06.2016
Autor: hippias

Hätte ich die Stirling-Zahlen eher erkannt, hätte ich mir einiges an arbeit ersparen können. Bei mir tauchten sie bei der Polynomgleichung [mm] $\prod_{i=0}^{n-1} [/mm] (t-i)= [mm] \sum_{k=1}^{n}\alpha_{k,n}t^{k}$ [/mm] auf.

Die Frage, welche Methoden es zur Lösung von $2$-dimensionalen Rekursionsgleichungen gibt, ist trotzdem interessant.

Bezug
                        
Bezug
Rekusiv definierte Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Mi 15.06.2016
Autor: Ladon

Neben Differenzenrechnung, solltest du nach "erzeugnender Funktion" einer Folge suchen.
Aigners "Diskrete Mathematik" erklärt das Vorgehen für Folgen, die nur von einer Variablen abhängen.

Viele Grüße
Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]