matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursive folgen, monotoni...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Rekursive folgen, monotoni...
Rekursive folgen, monotoni... < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive folgen, monotoni...: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:07 Mi 24.11.2010
Autor: Mathematiklady

Aufgabe
Das Pendel einer Uhr mit einer Schwingungsdauer (Periode) von zwei Sekunden wird innerhalb
der ersten Sekunde jeder Periode durch einen Stoß angeregt; dadurch vermehrt sich seine
Gesamtenergie jeweils um ein Joule. In der restlichen Zeit einer Periode verringert sich die Energie
des Pendels  infolge von Reibungsverlusten  jeweils um vier Prozent.
En bezeichne die Gesamtenergie des Pendels zu Beginn der n-ten Periode.
a) Wie lautet die Rekursionsformel für die Folge [mm] (E_{n})? [/mm]
b) Für den Fall [mm] E_{1} [/mm] = 0 zeige man, dass [mm] (E_{n}) [/mm] monoton wachsend und nach oben beschränkt
ist.
c) Gegen welchen Grenzwert strebt die Folge?


Meine Idee:

Zu a. die Rekursionsformel lautet

[mm] E_{n+1}=0,96(E_{n}+1) [/mm]

Zu b. weiss ich gar nicht wie ich vorgehen soll, muss da was mit vielleicht mit der Cauchyfolge bewiesen werden.

Zu c wenn ich b beweisen würde und es monoton wachsend und nach oben beschränkt wäre dann kann man davon ausgehen das es einen Grenzwert hat und das so berechnen

Den Grenzwert erhält man über den Ansatz:

[mm] \limes_{n\rightarrow\infty}E_{n+1} [/mm] = [mm] \limes_{n\rightarrow\infty}E_{n} [/mm]  =: E

Dies nun in die Rekursionsvorschrift einsetzen:

[mm] E_{n+1} [/mm]  =  [mm] \left(E_n+1\right)\cdot{}0{,}96 [/mm]


[mm] \Rightarrow [/mm]  E  =  [mm] \left(E+1\right)\cdot{}0{,}96 [/mm]

Nun umstellen nach dem Grenzwert  

E = (E+1)*0.96
0,04E=0,96

E=24  


Sind meine Berechnungen bisher richtig oder falsch und fehlt noch etwas???
Könnt ihr mir bitte weiterhelfen...
Ich bin wirklich verzweifelt..

Lg und einen Herzlichen Dank.....

        
Bezug
Rekursive folgen, monotoni...: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Mi 24.11.2010
Autor: Pia90

Ich denke deine Berechnung sind bisher in Ordnung, die Grenzwertberechnung erscheint mir jedenfalls nachvollziehbar und logisch...

spontan kam mir gerade zu b die Idee, dass die Folge ja auf jeden Fall durch 0 nach unten beschränkt ist.
Um die Beschr. nach oben zu untersuchen muss ja folgendes gelten
[mm] \exists [/mm] c [mm] \in \IR \forall [/mm] n [mm] \in \IN: E_n \le [/mm] c, wobei c [mm] \ge [/mm] 0
Jetzt muss man ja im Prinzip die Existenz von c beweisen. Ich denke das geht durch vollständige Induktion:
(IA) n=1: [mm] E_1 [/mm] = 0 [mm] \le [/mm] c
(IV) Die Beh. gelte für ein n [mm] \in \IN [/mm] < [mm] E_n \le [/mm] c
(IS) n [mm] \to [/mm] n+1
der Induktionsschritt bereitet mir jedoch grad Probleme, aber vielleicht hilft dir das ja trotdem weiter...

LG Pia

Bezug
                
Bezug
Rekursive folgen, monotoni...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Mi 24.11.2010
Autor: Mathematiklady

Cool danke dann versuche ich das auch mal...hoffe das dir jetzt auch einwenig weitergeholfen ist mit der c ;)....

Bezug
        
Bezug
Rekursive folgen, monotoni...: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Fr 26.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Rekursive folgen, monotoni...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Sa 27.11.2010
Autor: ullim

Hi,

das die Folge konvergent ist sieht man auch daran

Durch rekursives einsetzten folgt

[mm] E_2=\alpha*[E_1+1] [/mm]

[mm] E_3=\alpha*(E_2+1)=\alpha*[\alpha*(E_1+1)+1]=\alpha^2*E_1+\alpha^2+\alpha [/mm]

[mm] E_4=\alpha*[E_3+1]=\alpha*[\alpha^2*E_1+\alpha^2+\alpha+1]=\alpha^3*E_1+\alpha^3+\alpha^2+\alpha [/mm]

d.h.

[mm] E_{n+1}=\alpha^n*E_1+\summe_{k=1}^{n}\alpha^k=\alpha^n*E_1+\summe_{k=0}^{n}\alpha^k-1 [/mm]

und das konvergiert gegen

[mm] \limes_{n\rightarrow\infty}E_{n+1}=\br{1}{1-\alpha}-1=24 [/mm] weil [mm] \alpha^n [/mm] gegen 0 konvergiert, egal welchen Anfangswert [mm] E_1 [/mm] annimmt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]