matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteRekursive Folge Grenzwert bewe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Rekursive Folge Grenzwert bewe
Rekursive Folge Grenzwert bewe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folge Grenzwert bewe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Fr 13.01.2012
Autor: Benja91

Aufgabe
u1=64
[mm] u_{n+1}=\wurzel{4u_{n}} [/mm]
[mm] \limes_{n\rightarrow\infty}u_{n}=4 [/mm]

Beweisen Sie, dass der Grenzwert 4 ist

Hallo,

ich habe diese Frage in keinem anderen Forum gestellt.

Ich möchte obige Behauptung per Induktion zeigen. Mein einziges Problem ist der Induktionsanfang. [mm] u_{n}\le4 [/mm] sein. Nun habe ich aber nur u1=64 gegeben und [mm] 64\le4 [/mm] ist ja eine falsche Behauptung. Wie kann ich dieses Problem lösen?

Der Induktionsschritt ist kein Problem und ich komme dann auch auf die Behauptung...
Vielen Dank und Gruß
Benja

        
Bezug
Rekursive Folge Grenzwert bewe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Fr 13.01.2012
Autor: fred97


> u1=64
>  [mm]u_{n+1}=\wurzel{4u_{n}}[/mm]
>  [mm]\limes_{n\rightarrow\infty}u_{n}=4[/mm]
>  
> Beweisen Sie, dass der Grenzwert 4 ist
>  Hallo,
>  
> ich habe diese Frage in keinem anderen Forum gestellt.
>
> Ich möchte obige Behauptung per Induktion zeigen. Mein
> einziges Problem ist der Induktionsanfang. [mm]u_{n}\le4[/mm] sein.
> Nun habe ich aber nur u1=64 gegeben und [mm]64\le4[/mm] ist ja eine
> falsche Behauptung. Wie kann ich dieses Problem lösen?



Die Ungleichung  [mm]u_{n}\le4[/mm]  ist falsch für jedes n  !!!

Richtig ist:

            [mm]u_{n}\ge4[/mm]   für jedes n.

FRED

>
> Der Induktionsschritt ist kein Problem und ich komme dann
> auch auf die Behauptung...
>  Vielen Dank und Gruß
>  Benja


Bezug
                
Bezug
Rekursive Folge Grenzwert bewe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Fr 13.01.2012
Autor: Benja91

Klar, es ist ja monoton fallend. Vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]