matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursive Folge - Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Rekursive Folge - Beweis
Rekursive Folge - Beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folge - Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Do 01.11.2007
Autor: abi2007LK

Hallo,

auf unserem Übungsblatt ist folgende Aufgabe zu finden:

Berechnen Sie die ersten fünf Glieder der rekursiv definierten Folge. Finden und beweisen Sie dann eine explizite Darstellung für diese.

Folge:

[mm] a_{1}=2,\; \; \; \; \; \; \; \; \; \; \; \; \; \; a_{n+1}=\frac{1}{3}\sum_{j=1}^{n}{a_{j}} [/mm]

Gut - die ersten fünf Glieder sind:

2/3, 8/9, 32/27, 128/81 und 512/249

Die explizite Darstellung, die ich gefunden habe:

[mm] \frac{4^{n}}{\frac{2}{3^{n}}} [/mm]

Nun soll ich das beweisen. Mein Ziel ist:

[mm] \frac{2\; \cdot \; \left( \frac{4}{3} \right)^{n}}{3} [/mm]

Also:

[mm] \frac{1}{3}\sum_{j=1}^{n+1}{a_{j}}=\; \frac{1}{3}\sum_{j=1}^{n}{a_{j}}+a_{n+1}\; [/mm]

Nun kann ich ja den ersten Summanden der rechten Seite ersetzen durch [mm] a_{n+1} [/mm] - dies ergibt:

[mm] a_{n+1}+a_{n+1}\; =\; 2\left( a_{n+1} \right)\; =\; 2\left( \frac{4^{n}}{\frac{2}{3^{n}}} \right)\; =\; \left( \frac{4}{3} \right)^{n} [/mm]

Nicht ganz, das, was ich zeigen wollte. Hilfe. :(

        
Bezug
Rekursive Folge - Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 01.11.2007
Autor: Memorius

Hallo!

Sieht so aus als hätten wir die selben Aufgaben zu bewältigen. ;)

Deine Folge ist nicht so ganz richtig.

Schau mal hier:

https://matheraum.de/read?t=314366&v=t#i314875

Da wurde diese Aufgabe bereits vorgerechnet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]