matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursive Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Rekursive Folge
Rekursive Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Di 20.11.2012
Autor: hilbert

Hallo , ich ssll den Grenzwert einer Folge herausfinden:

[mm] a_{n+1}=a_n(2-c*a_n) [/mm] mit c [mm] \in \IR [/mm] und c>0 sowie [mm] 0 Da stellt sich mir die erste Frage:
Wenn  ich das mit dem Satz der monotonen Konvergenz zeigen möchte, dann weiß ich durch eine Nebenbetrachtung, dass der Grenzwert 1/c sein sollte und in der Aufgabenstellung steht, ich soll zeigen dass die Folge monoton wöchst und nach oben beschränkt ist, aber das monoton wachsen kann doch bei [mm] a_0 [/mm] > [mm] \bruch{1}{c} [/mm] gar nicht funktionieren??

Gemäß der Aufgabenstellung versuche ich es aber einfach mal:

Monotonie:

[mm] \bruch{a_{n+1}}{a_n}=2-ca_n [/mm] damit das monoton wachsend ist muss [mm] c*a_n [/mm] < 1 sein, demnach bräuchte ich eine obere Schranke [mm] \bruch{1}{c} [/mm] ab einem gewissen [mm] n_0. [/mm]

Dies zeige ich jetzt mit Induktion, IA ist direkt okay falls [mm] a_0 [/mm] <  [mm] \bruch{1}{c}, [/mm] falls nicht: [mm] a_0= \bruch{1}{c}+\varepsilon [/mm] mit 0 < [mm] \varepsilon [/mm] < [mm] \bruch{1}{c} [/mm]

[mm] a_1=a_0*(2-c*a_0)=(\bruch{1}{c}+\varepsilon)(2-c*( \bruch{1}{c}+\varepsilon))=(\bruch{1}{c}+\varepsilon)(1-c\varepsilon)=\bruch{1}{c}-\varepsilon+\varepsilon-c\varepsilon^2=\bruch{1}{c}-c\varepsilon^2 [/mm] < [mm] \bruch{1}{c}. [/mm]

Also wäre der IA dann für [mm] a_1 [/mm] gültig.

[mm] IV:a_n [/mm] < [mm] \bruch{1}{c} [/mm] bzw [mm] a_n [/mm] = [mm] \bruch{1}{c}-\varepsilon [/mm]

IS: n->n+1
[mm] a_{n+1}=a_n(2-ca_n)=(\bruch{1}{c}-\varepsilon)(2-c(\bruch{1}{c}-\varepsilon)=(\bruch{1}{c}-\varepsilon)(1+\varepsilon)=\bruch{1}{c}+\bruch{1}{c}\varepsilon-\varepsilon-\varepsilon^2=\bruch{1}{c}-\varepsilon+(\bruch{1}{c}-\varepsilon)\varepsilon [/mm] und hier komme ich nicht weiter. Ich denke das geht sowieso viel einfacher als ich das hier versuche. Habt ihr einen netten Tipp für mich?

        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Di 20.11.2012
Autor: reverend

Hallo hilbert,

> Hallo , ich ssll den Grenzwert einer Folge herausfinden:
>  
> [mm]a_{n+1}=a_n(2-c*a_n)[/mm] mit c [mm]\in \IR[/mm] und c>0 sowie
> [mm]0
>  Da stellt sich mir die erste Frage:
>  Wenn  ich das mit dem Satz der monotonen Konvergenz zeigen
> möchte, dann weiß ich durch eine Nebenbetrachtung, dass
> der Grenzwert 1/c sein sollte und in der Aufgabenstellung
> steht, ich soll zeigen dass die Folge monoton wöchst und
> nach oben beschränkt ist, aber das monoton wachsen kann
> doch bei [mm]a_0[/mm] > [mm]\bruch{1}{c}[/mm] gar nicht funktionieren??

Stimmt. In diesem Fall ist sie auch monoton fallend.
Von daher ist auch das folgende so unnötig kompliziert.
Ich sehe gerade nicht, wie man beide Fälle in einer Rechnung erschlägt, aber mit Fallunterscheidung geht es gut.

Für [mm] a_0=\tfrac{1}{c} [/mm] ist die Folge konstant.

Grüße
reverend

> Gemäß der Aufgabenstellung versuche ich es aber einfach
> mal:
>  
> Monotonie:
>  
> [mm]\bruch{a_{n+1}}{a_n}=2-ca_n[/mm] damit das monoton wachsend ist
> muss [mm]c*a_n[/mm] < 1 sein, demnach bräuchte ich eine obere
> Schranke [mm]\bruch{1}{c}[/mm] ab einem gewissen [mm]n_0.[/mm]
>  
> Dies zeige ich jetzt mit Induktion, IA ist direkt okay
> falls [mm]a_0[/mm] <  [mm]\bruch{1}{c},[/mm] falls nicht: [mm]a_0= \bruch{1}{c}+\varepsilon[/mm]
> mit 0 < [mm]\varepsilon[/mm] < [mm]\bruch{1}{c}[/mm]
>  
> [mm]a_1=a_0*(2-c*a_0)=(\bruch{1}{c}+\varepsilon)(2-c*( \bruch{1}{c}+\varepsilon))=(\bruch{1}{c}+\varepsilon)(1-c\varepsilon)=\bruch{1}{c}-\varepsilon+\varepsilon-c\varepsilon^2=\bruch{1}{c}-c\varepsilon^2[/mm]
> < [mm]\bruch{1}{c}.[/mm]
>  
> Also wäre der IA dann für [mm]a_1[/mm] gültig.
>  
> [mm]IV:a_n[/mm] < [mm]\bruch{1}{c}[/mm] bzw [mm]a_n[/mm] = [mm]\bruch{1}{c}-\varepsilon[/mm]
>  
> IS: n->n+1
>  
> [mm]a_{n+1}=a_n(2-ca_n)=(\bruch{1}{c}-\varepsilon)(2-c(\bruch{1}{c}-\varepsilon)=(\bruch{1}{c}-\varepsilon)(1+\varepsilon)=\bruch{1}{c}+\bruch{1}{c}\varepsilon-\varepsilon-\varepsilon^2=\bruch{1}{c}-\varepsilon+(\bruch{1}{c}-\varepsilon)\varepsilon[/mm]
> und hier komme ich nicht weiter. Ich denke das geht sowieso
> viel einfacher als ich das hier versuche. Habt ihr einen
> netten Tipp für mich?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]