matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursive Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Rekursive Folge
Rekursive Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Sa 16.04.2011
Autor: zoj

Aufgabe
Die Folge [mm] (a_{n}) [/mm] ist rekursiv definiert durch:
[mm] a_{1} [/mm] := 1, [mm] a_{n+1} [/mm] := [mm] \bruch{a_{n}}{2+a_{n}} [/mm]

Ich will die Folge auf Grenzwert untersuchen.

Könnt Ihr mal schauen, ob ich alles korrekt gelöst hab?

1) Beschränktheit nachweisen.
[mm] a_{1}=1 [/mm] , [mm] a_{2}=\bruch{1}{3}, a_{3}=\bruch{3}{21} [/mm]

Vermutung: Folge konvergiert gegen 0, Obere Schranke: 1 untere Schranke: 0.

Induktionsanfang:
n=1 => [mm] a_{1}=1 [/mm]

Induktionsvorraussetzung:
0 [mm] \le a_{n} \le [/mm] 1

Induktionsschritt:
n -> n+1
0 [mm] \le a_{n+1} \le [/mm] 1

0 [mm] \le \bruch{a_{n}}{2+a_{n}} \le [/mm] 1
Abschätzen:
0 [mm] \le \bruch{1}{2+0} \le [/mm] 1

0 [mm] \le \bruch{1}{2} [/mm] => untere Schranke ist 0
[mm] \bruch{1}{2+0} \le [/mm] 1 => obere Schranke ist 1
=> Die Folge ist beschränkt.

Monotonie:
Monoton fallend:
[mm] a_{n} \ge a_{n+1} [/mm]
[mm] \bruch{a_{n}}{a_{n+1}} \ge [/mm] 1

[mm] \bruch{a_{n}}{\bruch{a_{n}}{2+a_{n}}} \ge [/mm] 1

[mm] \bruch{a_{n}(2+a_{n})}{a_{n}} \ge [/mm] 1
[mm] 2+a_{n} \ge [/mm] 1 => [mm] a_{n} [/mm] monoton fallend.

Grenzwert:
a = [mm] \bruch{a}{2+a} [/mm]
a(2+a) = a
[mm] a^{2}+a [/mm] =0
a(a+1) =0
=> [mm] a_{1}=0 [/mm] , [mm] a_{2} [/mm] = -1
Durch die vorherige Untersuchung ist [mm] a_{n} \ge [/mm] 0 => Grenzwert: 0

Am Rande: Kenn Jemand diese Aufgabensammlung?
http://www.wittwer.de/index.php?ANZ=B%FCcher&SHW=Neuerscheinungen&GET=Wissenschaft%20Technik&TID=525&TSK=view

Oder kennt vielleich Jemand eine Aufgabensammlung, wo die Aufgaben gut erklärt werden?

Mfg

        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Sa 16.04.2011
Autor: leduart

Hallo
alles richtig nur solltest du [mm] a_n>a_{n+1} [/mm] statt [mm] \ge [/mm]
Gruss leduart


Bezug
                
Bezug
Rekursive Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Sa 16.04.2011
Autor: zoj

Juhu :)

Wie sieht es mit den Übungsaufgaben aus?
Hast du dir evtl. auch mal eine Sammlung von Aufgaben gekauft?

Ich bräuchte ein Buch mit ausführlichen Lösungen,
vielleicht kannst du mir ein empfehlen?

Bezug
                        
Bezug
Rekursive Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Sa 16.04.2011
Autor: leduart

Hallo
hier im forum gibts  dazu ganz viele threads, die du mit der suchfunktion (oben rechts) finden kannst.ich hab eben in Hochschule analysis viele seiten unter dem Stichwort rekursive folgen gefunden. du kannst ja erst nur die Aufgabe lesen, selbst probieren und dann erst den thread mit den Hilfen.
ein buch  speziell dazu kenn ich nicht, drum las ich deine frage offen.
hilfreich sind auch alte Übungsaufgaben zur Analysis 1 im Netz da gibts oft auch die Lösungen.
gruss leduart


Bezug
                                
Bezug
Rekursive Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:06 Sa 16.04.2011
Autor: zoj

OK, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]