matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesRekursionsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Rekursionsproblem
Rekursionsproblem < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursionsproblem: changing money
Status: (Frage) beantwortet Status 
Datum: 23:54 Sa 09.06.2012
Autor: sissenge

Ich soll nächste Woche ein Referat über das Rekursionsproblem "Changing money" halten, also :"wieviele Möglichkeiten gibt es zB. einen Dollar zu wechseln?"

jetzt habe ich damit angefangen mit Partition angefangen, also In wieviele positive Summanden lässt sich eine positive Zahl zerlegen.

Über verschiedene schritte bin ich dann zu der Formel gekommen :

[mm] \summe_{n=0}^{\infty}h(n,2)x^{n}=\summe_{n=0}^{\infty}g(n,1)x^{n} \summe_{n=0}^{\infty}g(n,2)x^{n} [/mm]

wobei h(n,m):= Anzahl der Summenzerlegung von n in Summanden kleiner gleich m
und g(n,m):=Anzahl der Summenzerlegung von n in Summanden gleich m

Bis dahin verstehe ich alles einwandfrei, was ich jetzt nicht verstehe ist, wie ich zb. diese Formel darauf anwende: Wieviele Möglichkeiten gibt es die Zahl 7 mit summen aus 1 und 2 auszudrücken??
Dann würde ja folgendes dastehen:
[mm] \summe_{n=0}^{7}h(n,2)x^{n}=(1+x^{1}+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7})(1+x^{2}+x^{4}+x^{6}) [/mm]

aber jetzt weiß ich ehrlich gesagt nicht was mir das bringt... woher weiß ich jetzt wieviele Möglichkeiten es gibt????

        
Bezug
Rekursionsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 01:31 So 10.06.2012
Autor: leduart

Hallo
ich versteh deine Formeln nicht.
was ist das x darin? Was sind deine "verschiedenen schritte da hin? und wie kannst du bis [mm] \infty [/mm] summieren.
bei 7 in 1 und 2 zerlegen
fang mit 7*1 an ,dann 1*2+5*1; 2*2+3*1 3*2+1 also 4 verschiedene Zerlegungen
etwa dein g(n,m):=Anzahl der Summenzerlegung von n in Summanden gleich m : da gibt es doch nur eine a)n teilbar durch m eine Zerlegung,  6 etwa kann man nur in 2+2+2 zerlegen b)  nicht tb durch m dann auch nur eine mit einem Rest. 7=2+2+2+1
also erklär bitte deine Formel.
Gruss leduart
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]