matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRekursionsformeln mit Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Rekursionsformeln mit Folgen
Rekursionsformeln mit Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursionsformeln mit Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Mi 21.11.2007
Autor: U-Gen

Aufgabe
Zeigen Sie, dass die unten angegebenen Rekursionsformeln wohldefinierte Folgen liefern. Untersuchen Sie diese Folgen auf Konvergenz und bestimmen Sie gegebenen falls den Grenzwert.

a) [mm] x_{n+1} [/mm] = [mm] \frac{x_{n}}{1 + x_n} [/mm] , [mm] x_0 [/mm] = a > 0

b) [mm] x_{n+1} [/mm] = [mm] \frac{2 + x_n}{1 + x_n} [/mm] , [mm] x_0 [/mm] = a > 0

c) [mm] x_{n+1} [/mm] = - [mm] \frac{1 + x_n}{x_n} [/mm] , [mm] x_0 [/mm] = a > 0

d) [mm] x_{n+1} [/mm] = [mm] \frac{1}{2} [/mm] (a + [mm] x^{2}_n) [/mm] , [mm] x_0 [/mm] = a [mm] \in [/mm] ]0,1[

Bei dieser Aufgabe weiss ich auch nichtmal den Anfang !

Würde mich um Hilfe freuen...

MFG

        
Bezug
Rekursionsformeln mit Folgen: erste Schritte
Status: (Antwort) fertig Status 
Datum: 15:20 Mi 21.11.2007
Autor: Roadrunner

Hallo U-Gen!


Berechne doch mal jeweils die ersten paar Folgenglieder. Daraus lässt sich doch schon eine Tendenz erkennen, was eine eventuelle Monotonie betrifft.

Wenn Du dann Monotonie sowie Beschränktheit (jeweils mittels vollständiger Induktion) nachweisen kannst, folgt daraus unmittelbar die Konvergenz.

Der entsprechende Grenzwert lässt sich dann mit dem Ansatz $x \ := \ [mm] \limes_{n\rightarrow\infty}x_n [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}x_{n+1}$ [/mm] berechnen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Rekursionsformeln mit Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Mi 21.11.2007
Autor: U-Gen

Geht die a) dann gegen 1 ?!

Das is blöd ich kann mir dat gar nicht vorstellen weil ich keine dergleiche Aufgabe gerechnet hab bzw den Rechenweg gesehen hab ...

Bezug
                        
Bezug
Rekursionsformeln mit Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mi 21.11.2007
Autor: rainerS

Hallo!

> Geht die a) dann gegen 1 ?!

Nein. Hast du dir mal ein paar Folgenglieder hingeschrieben? Probier's mal für a=1 und für a=2 aus!

  Viele Grüße
    Rainer

Bezug
                                
Bezug
Rekursionsformeln mit Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 22.11.2007
Autor: MaRaQ

Ich habe mich jetzt mal mit Aufgabenteilen a) und b) einige Stündchen auseinandergsetzt.
Die a) dürfte ich so weit eigentlich richtig haben, da komme ich über Monotonie ((streng) monoton fallend) und die Schranken a und 0 auf die Konvergenz gegen 0.

Bei der b) ist das ganze aber leider recht knifflig. Wohldefiniertheit ist noch klar.

Bei der Monotonie haperts bei mir leider. Zum einen fällt schon beim bloßen aufschreiben, z.B. für a = 5 das 1. Folgenglied aus der Reihe [mm] x_0 [/mm] > [mm] x_1 [/mm] < [mm] x_2 [/mm] > [mm] x_3 [/mm] > [mm] x_4 [/mm] ..., weshalb ich, wo ich mir nicht sicher bin, ob das erlaubt ist, die Monotonie erst ab dem 3. Folgenglied (n=2) betrachtet habe.
Ich komme auch beim formalen Beweis der Monotonie auf keinen grünen Zweig, bzw. stoße immer wieder auf Widersprüche, was mich doch etwas verwirrt.
Als Grenzwert erhalte ich hier nichtsdestotrotz 1.

Nur, wie zeige ich hier die Konvergenz, da mich ja scheinbar die Monotonie im Stich lässt?

Bezug
                                        
Bezug
Rekursionsformeln mit Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Do 22.11.2007
Autor: rainerS

Hallo!

> Ich habe mich jetzt mal mit Aufgabenteilen a) und b) einige
> Stündchen auseinandergsetzt.
> Die a) dürfte ich so weit eigentlich richtig haben, da
> komme ich über Monotonie ((streng) monoton fallend) und die
> Schranken a und 0 auf die Konvergenz gegen 0.
>  
> Bei der b) ist das ganze aber leider recht knifflig.
> Wohldefiniertheit ist noch klar.
>  
> Bei der Monotonie haperts bei mir leider. Zum einen fällt
> schon beim bloßen aufschreiben, z.B. für a = 5 das 1.
> Folgenglied aus der Reihe [mm]x_0[/mm] > [mm]x_1[/mm] < [mm]x_2[/mm] > [mm]x_3[/mm] > [mm]x_4[/mm] ...,
> weshalb ich, wo ich mir nicht sicher bin, ob das erlaubt
> ist, die Monotonie erst ab dem 3. Folgenglied (n=2)
> betrachtet habe.

Für die Konvergenz ist das völlig ausreichend. Endlich viele Folgenglieder am Anfang machen dafür keinen Unterschied.

>  Ich komme auch beim formalen Beweis der Monotonie auf
> keinen grünen Zweig, bzw. stoße immer wieder auf
> Widersprüche, was mich doch etwas verwirrt.

Du willst doch das Vorzeichen von [mm]x_{n+1}-x_n[/mm] bestimmen:

[mm]x_{n+1}-x_n = \bruch{2+x_{n}}{1+x_{n}} -x_{n} = \bruch{2+x_{n} - x_{n}(1+x_{n})}{1+x_{n}} = \bruch{2-x_{n}^{2}}{1+x_{n}}[/mm].

Überlege dir zunächst, dass alle [mm]x_{n}[/mm] nichtnegativ sind. Dann reduziert sich die Frage nach der Monotonie auf die Frage, ob die [mm]x_{n}[/mm] größer oder kleiner als [mm]\sqrt{2}[/mm] sind.

  Viele Grüße
    Rainer

Bezug
                                                
Bezug
Rekursionsformeln mit Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Do 22.11.2007
Autor: MaRaQ

Das ist natürlich eine sehr nützliche Idee, die Monotonie über das Vorzeichen zu zeigen. Danke dafür :)

Nun, wie verhält sich [mm] x_n [/mm] zu [mm] \sqrt{2}? [/mm]

Wir wissen ja:  

[mm] x_n [/mm] = [mm] \bruch{2 + x_{n-1}}{1+x_{n-1}} [/mm] = 1 + [mm] \bruch{1}{1 + x_{n-1}} [/mm] < 1,5

Da die untere Schranke und gleichzeitig der Grenzwert dieser Folge 1 ist, kann der geamte Term nur kleiner als 1,5 sein.
Was bedeutet, dass unendlich viele Folgeglieder (wegen der Nähe zum Grenzwert) größer als Wurzel 2 sind, oder?
Schließlich liegen in der Epsilon-Umgebung von 1,5 unendlich viele Elemente der Folge?

Bezug
                                                        
Bezug
Rekursionsformeln mit Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Do 22.11.2007
Autor: rainerS

Hallo!

> Das ist natürlich eine sehr nützliche Idee, die Monotonie
> über das Vorzeichen zu zeigen. Danke dafür :)
>  
> Nun, wie verhält sich [mm]x_n[/mm] zu [mm]\sqrt{2}?[/mm]
>  
> Wir wissen ja:  
>
> [mm]x_n[/mm] = [mm]\bruch{2 + x_{n-1}}{1+x_{n-1}}[/mm] = 1 + [mm]\bruch{1}{1 + x_{n-1}} <1,5[/mm]
>  
> Da die untere Schranke und gleichzeitig der Grenzwert
> dieser Folge 1 ist, kann der geamte Term nur kleiner als
> 1,5 sein.

Einverstanden mit der Schranke, aber nicht mit dem Grenzwert.

Es kommt doch raus, dass

[mm]x_{n+1}-x_{n} \begin{cases} >0 & \text{ für $x_n<\sqrt{2}$} \\ <0 & \text{ für $x_n>\sqrt{2}$} \\ =0 & \text{ für $x_n=\sqrt{2}$} \end{cases}[/mm].

Was sagt dir das?

Den Grenzwert kannst du bestimmen, indem du in [mm]x_n =1 + \bruch{1}{1 + x_{n-1}}[/mm] auf beiden Seiten den Grenzübergang [mm]n\rightarrow\infty[/mm] machst.

  Viele Grüße
    Rainer

Bezug
                                                                
Bezug
Rekursionsformeln mit Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Do 22.11.2007
Autor: MaRaQ

Danke soweit. Ich versuch das ganze demnächst noch mal mit etwas Abstand zu betrachten. Grade bin ich nur noch verwirrt. ^^

Den Grenzwert hatte ich über [mm] x_n [/mm] = 1 + [mm] \bruch{1}{n + \bruch{1}{1+a}} [/mm] bestimmt. Damit kam ich dann auf 1.

Nunja. ^^

Bezug
                                                                        
Bezug
Rekursionsformeln mit Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 22.11.2007
Autor: rainerS

Hallo!

> Danke soweit. Ich versuch das ganze demnächst noch mal mit
> etwas Abstand zu betrachten. Grade bin ich nur noch
> verwirrt. ^^
>  
> Den Grenzwert hatte ich über [mm]x_n[/mm] = 1 + [mm]\bruch{1}{n + \bruch{1}{1+a}}[/mm]
> bestimmt. Damit kam ich dann auf 1.

Da muss 2 statt des n stehen:

[mm]x_n= 1+ \bruch{1}{1+x_{n-1}} = 1 + \bruch{1}{1+ \left(1+ \bruch{1}{1+a}\right)}[/mm].

Dann stimmt wieder Alles.

  Viele Grüße
    Rainer

Bezug
        
Bezug
Rekursionsformeln mit Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Mi 21.11.2007
Autor: rainerS

Hallo!

> Zeigen Sie, dass die unten angegebenen Rekursionsformeln
> wohldefinierte Folgen liefern.

Dazu sollst du noch nachweisen, dass nicht irgendwann ein ungültiger Ausdruck auftritt, dass also zum Beispiel bei der

> a) [mm]x_{n+1}[/mm] = [mm]\frac{x_{n}}{1 + x_n}[/mm] , [mm]x_0[/mm] = a > 0

der Nenner nie 0 wird, also ein [mm]x_n=-1[/mm] nicht vorkommen kann.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]