matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieRekursion für Recontre-Zahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Rekursion für Recontre-Zahl
Rekursion für Recontre-Zahl < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursion für Recontre-Zahl: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 10:23 So 06.05.2012
Autor: Blackwolf1990

Aufgabe
Bezeichne [mm] (D_{k})_{k\in \IN_{0}} [/mm] die Folge der Recontre-Zahlen. Dann gilt [mm] D_{0}=1, D_{1}=0 [/mm] sowie für [mm] n\in \IN [/mm] weiterhin: [mm] D_{n+1} [/mm] = [mm] n(D_{n}+D_{n-1}). [/mm] Beweisen Sie dies durch kombinatorische Überlegungen!

Hallo liebe Mathefreunde!^^
Ich komme leider mit dieser Aufgabe nicht so zurecht.. Ich kann mir einfach auf keine richtige Weise das kombinatorisch erklären.
Mir ist bekannt, dass [mm] D_{n}=card E_{n} [/mm] gilt, also dies die Anzahl der Permutationen aus [mm] S_{n} [/mm] ohne Fixpunkte beschreibt. Doch ich finde leider keine richtige Schlussfolgerung daraus für n+1 ... Ich würde mich freuen wenn mir jemand beim Verständnis der Aufgabe helfen könnte ! :)
Vielen Dank !

LG Blacki

        
Bezug
Rekursion für Recontre-Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Di 08.05.2012
Autor: kamaleonti

Hallo Blackwolf1990,

> Bezeichne [mm](D_{k})_{k\in \IN_{0}}[/mm] die Folge der
> Recontre-Zahlen. Dann gilt [mm]D_{0}=1, D_{1}=0[/mm] sowie für [mm]n\in \IN[/mm] weiterhin: [mm]D_{n+1}[/mm] = [mm]n(D_{n}+D_{n-1}).[/mm]

[mm] D_n [/mm] beinhaltet die Permutationen, deren Zyklendarstellung keine Einzelelemente enthält.
Zeige die Aussage mittels Induktion.

[mm] n\to(n+1): [/mm] Es kommt das Element (n+1) dazu.

a) (n+1) ist in Zyklus der Länge 2 enthalten. Zeige, dass es [mm] nD_{n-1} [/mm] solche Permutationen/ Derangements gibt.

b) (n+1) ist in Zyklus der Länge [mm] \ge3 [/mm] enthalten. Zeige, dass es davon [mm] nD_n [/mm] viele gibt.


>  Mir ist bekannt, dass [mm]D_{n}=card E_{n}[/mm] gilt, also dies die
> Anzahl der Permutationen aus [mm]S_{n}[/mm] ohne Fixpunkte
> beschreibt.

LG

Bezug
                
Bezug
Rekursion für Recontre-Zahl: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:59 Fr 11.05.2012
Autor: Blackwolf1990

Achsoooo, na dann ist alles soweit klar ! :) Vielen Dank für deine Hilfe, kamaleonti, das hat mir weitergeholfen !

Liebe Grüße
Blacki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]