matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikRekursion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Rekursion
Rekursion < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:04 Mi 13.11.2013
Autor: Madabaa

Aufgabe
Stellen Sie für den Ausdruck
[mm] y_{n}= \integral_{0}^{1}{\bruch{x^n}{x+5} dx} [/mm]

eine Rekursionsformel auf
(Hinweis: Berechnen Sie dazu den Term [mm] y_{n}+5y_{n-1}. [/mm]
Berechnen Sie mit der Rekursionsformel (beginnend mit [mm] y_{0}) [/mm]
Werte für aufsteigendes n.
Ab welchem Wert von n werden die Ergebnisse so ungenau, dass keine
gültige Stelle mehr verbleibt?
Was ist die Ursache der starken Fehlerfortpflanzung?
Wie kann man diesen Fehlereffekt durch Umstellen
der Formel vermeiden und (z.B.) [mm] y_{30} [/mm] sehr genau berechnen?

Hallo,

Rekursionsformel :

[mm] y_{n}= \integral_{0}^{1}{\bruch{x^n}{x+5} dx} [/mm]
[mm] y_{n-1}= \integral_{0}^{1}{\bruch{x^{n-1}}{x+5} dx} [/mm]

[mm] y_{n}+5y_{n-1}= \integral_{0}^{1}{\bruch{x^n}{x+5}+5\bruch{x^{n-1}}{x+5} dx} [/mm]
.......
= [mm] y_{n}+5y_{n-1}= \bruch{1}{n} [/mm]

[mm] \Rightarrow y_{n}+5y_{n-1}= \bruch{1}{n} [/mm]
Auflösen nach  [mm] y_{n}, [/mm] somit die Rekursionsformel:
[mm] y_{n}=\bruch{1}{n}-5y_{n-1} [/mm]
Startwert [mm] y_{0}= \integral_{0}^{1}{\bruch{1}{x+5} dx} [/mm]
= ln 6 - ln 5
Ich hoffe das es soweit richtig ist.

Aber bei der Frage wie man diese Formel umstellen soll um den Fehlereffekt zu vermeiden,da bin ich mir unsicher.

Ich habe die Formel nach [mm] y_{n-1} [/mm] umgeformt:
[mm] y_{n-1}=\bruch{1}{5n}-\bruch{y_{n}}{5} [/mm]
Somit habe ich doch eine Rückwärtsrekursion?

Wie berechne ich hier den Anfangswert?

Gruß
Madabaa

        
Bezug
Rekursion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mi 13.11.2013
Autor: abakus


> Stellen Sie für den Ausdruck
> [mm]y_{n}= \integral_{0}^{1}{\bruch{x^n}{x+5} dx}[/mm]

>

> eine Rekursionsformel auf
> (Hinweis: Berechnen Sie dazu den Term [mm]y_{n}+5y_{n-1}.[/mm]
> Berechnen Sie mit der Rekursionsformel (beginnend mit
> [mm]y_{0})[/mm]
> Werte für aufsteigendes n.
> Ab welchem Wert von n werden die Ergebnisse so ungenau,
> dass keine
> gültige Stelle mehr verbleibt?
> Was ist die Ursache der starken Fehlerfortpflanzung?
> Wie kann man diesen Fehlereffekt durch Umstellen
> der Formel vermeiden und (z.B.) [mm]y_{30}[/mm] sehr genau
> berechnen?
> Hallo,

>

> Rekursionsformel :

>

> [mm]y_{n}= \integral_{0}^{1}{\bruch{x^n}{x+5} dx}[/mm]
> [mm]y_{n-1}= \integral_{0}^{1}{\bruch{x^{n-1}}{x+5} dx}[/mm]

>

> [mm]y_{n}+5y_{n-1}= \integral_{0}^{1}{\bruch{x^n}{x+5}+5\bruch{x^{n-1}}{x+5} dx}[/mm]

>

> .......
> = [mm]y_{n}+5y_{n-1}= \bruch{1}{n}[/mm]

>

> [mm]%5CRightarrow%20%20y_%7Bn%7D%2B5y_%7Bn-1%7D%3D%20%5Cbruch%7B1%7D%7Bn%7D[/mm]
> Auflösen nach
> [mm]y_{n},[/mm] somit die Rekursionsformel:
> [mm]y_{n}=\bruch{1}{n}-5y_{n-1}[/mm]
> Startwert [mm]y_{0}= \integral_{0}^{1}{\bruch{1}{x+5} dx}[/mm]
> =
> ln 6 - ln 5
> Ich hoffe das es soweit richtig ist.

>

> Aber bei der Frage wie man diese Formel umstellen soll um
> den Fehlereffekt zu vermeiden,da bin ich mir unsicher.

>

> Ich habe die Formel nach [mm]y_{n-1}[/mm] umgeformt:
> [mm]y_{n-1}=\bruch{1}{5n}-\bruch{y_{n}}{5}[/mm]
> Somit habe ich doch eine Rückwärtsrekursion?

>

> Wie berechne ich hier den Anfangswert?

>

> Gruß
> Madabaa

Hallo,
den kannst du mit einer Näherung schätzen. Die zu intergrierende Kurve liegt so etwa bei [mm] $\frac{x^n}{5}$ [/mm] bis  [mm] $\frac{x^n}{6}$. [/mm]

Der dabei gemachte Fehler verringert sich von Stufe zu Stufe.
Gruß Abakus

Bezug
                
Bezug
Rekursion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mi 13.11.2013
Autor: Madabaa

Hallo abakus,

was meinst du genau mit der zu intergrierenden Kurve?

Was ich nicht verstehe ist was haben die [mm] \frac{x^n}{5} [/mm]  und [mm] \frac{x^n}{6} [/mm] jetzt genau zu bedeuten?

Gruß madabaa

Bezug
                        
Bezug
Rekursion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mi 13.11.2013
Autor: abakus


> Hallo abakus,

>

> was meinst du genau mit der zu intergrierenden Kurve?

>

> Was ich nicht verstehe ist was haben die [mm]\frac{x^n}{5}[/mm] und
> [mm]\frac{x^n}{6}[/mm] jetzt genau zu bedeuten?

>

> Gruß madabaa

Dein zu berechnendes Integral beschreibt den Flächeninhalt unter der Kurve [mm]\frac{x^n}{x+5}[/mm] im Intervall von 0 bis 1.
Für einen Startwert benötigst du einen geigneten (und vor allem einfach zu bestimmenden) Näherungswert dieses Flächeninhalts.
Da du dich im Interval von 0 bis 1 bewegst, läuft dein Zähler von [mm]0^n[/mm] bis [mm]1^n[/mm]. Zwischen diesen beiden Werten liegen Welten (relativ betrachtet)!
Der Nenner x+5 wandert dagegen nur von 5 bis 6 und ändert sich damit während dieses Verlaufs um maximal 20% seines Wertes.
Ich empfinde es demzufolge als eine angemessene Näherung, wenn ich den Nenner bei konstant 5 (oder bei konstant 6) belasse und nur den Zähler im Original behalte.
Ein Bruch wie [mm]\frac{x^n}{5}[/mm] lässt sich elementar integrieren und liefert dabei einen leicht verfügbaren und recht guten Näherungswert für das gesuchte Integral.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]