matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungRektifizierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Rektifizierbarkeit
Rektifizierbarkeit < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rektifizierbarkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:55 Mo 24.10.2011
Autor: pyw

Aufgabe
Untersuchen Sie die folgenden Kurven auf Rektifizierbarkeit. Tipp: Kurve skizzieren und obere bzw. untere Abschätzung für die Kurvenlänge angeben.

a) [mm] \gamma: [0,1]\to\IR, t\mapsto\begin{cases} t\sin(\pi/t), & t>0 \\ 0, & t=0 \end{cases} [/mm]

Hallo Forum,

Ich glaube nicht, dass die Kurve rektifizierbar ist (nahe 0 pendelt die Kurve hin und her). Ich weiß allerdings keine geeignete Abschätzung.
Kann mir bitte jemand helfen oder eine Idee für eine Abschätzung sagen?

Gruß,
pyw

        
Bezug
Rektifizierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mo 24.10.2011
Autor: kamaleonti

Hallo,

schau mal hier, da wird die Aufgabe äußerst ausführlich diskutiert.

LG

Bezug
        
Bezug
Rektifizierbarkeit: Aufgabe b)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mo 24.10.2011
Autor: pyw

Aufgabe
b) [mm] \gamma:[0,1]\to\IR, t\mapsto\begin{cases} t^2\sin(\pi/t), & t>0 \\ 0, & t=0 \end{cases} [/mm]

Hallo,

danke die andere Aufgabe habe ich jetzt verstanden. :-)

Bei Teilaufgabe b) will ich nun zeigen, dass die Kurve rektifizierbar ist.

Kann ich da sagen, dass [mm] \gamma [/mm] stetig differenzierbar ist (daraus folgt ja die Rektifizierbarkeit)? Es ist ja [mm] \lim_{t\to0}\frac{\gamma(t)-\gamma(0)}{t-0}=\lim_{t\to0}\frac{t^2\sin(\pi/t)-0}{t-0}=\lim_{t\to0}t\sin(\pi/t)=0. [/mm]

Gruß,
pyw

Bezug
                
Bezug
Rektifizierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 24.10.2011
Autor: reverend

Hallo pyw,

> b) [mm]\gamma:[0,1]\to\IR, t\mapsto\begin{cases} t^2\sin(\pi/t), & t>0 \\ 0, & t=0 \end{cases}[/mm]
>  
> Hallo,
>  
> danke die andere Aufgabe habe ich jetzt verstanden. :-)
>  
> Bei Teilaufgabe b) will ich nun zeigen, dass die Kurve
> rektifizierbar ist.
>  
> Kann ich da sagen, dass [mm]\gamma[/mm] stetig differenzierbar ist
> (daraus folgt ja die Rektifizierbarkeit)? Es ist ja
> [mm]\lim_{t\to0}\frac{\gamma(t)-\gamma(0)}{t-0}=\lim_{t\to0}\frac{t^2\sin(\pi/t)-0}{t-0}=\lim_{t\to0}t\sin(\pi/t)=0.[/mm]

Soweit korrekt. [ok]

Grüße
reverend


Bezug
                        
Bezug
Rektifizierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:32 Mo 24.10.2011
Autor: pyw

Hallo,

danke für die Antwort. Jetzt frage ich mich, ob es auch gemäß des Tipps möglich ist, eine obere Abschätzung für die Kurvenlänge in Aufgabe b) zu erhalten.

Man hat ja eine Zerlegung [mm] Z=(t_0,\ldots,t_n) [/mm] und definiert die Länge einer rektifizierbaren Kurve als [mm] \sup_z\sum_{j=0}^{n-1}|\gamma(t_{j+1})-\gamma(t_j)|. [/mm]

Ich hab probiert eine äquidistante Zerlegung [mm] (0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n}{n}) [/mm] zu nehmen. Das hat nur nicht wirklich funktioniert, da [mm] \sin(k\pi)=0 [/mm] für [mm] k\in\IZ... [/mm]

Hat jemand eine bessere Idee?

Danke und Gruß,
pyw

Bezug
                                
Bezug
Rektifizierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 26.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Rektifizierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:43 Di 25.10.2011
Autor: fred97


> b) [mm]\gamma:[0,1]\to\IR, t\mapsto\begin{cases} t^2\sin(\pi/t), & t>0 \\ 0, & t=0 \end{cases}[/mm]
>  
> Hallo,
>  
> danke die andere Aufgabe habe ich jetzt verstanden. :-)
>  
> Bei Teilaufgabe b) will ich nun zeigen, dass die Kurve
> rektifizierbar ist.
>  
> Kann ich da sagen, dass [mm]\gamma[/mm] stetig differenzierbar ist
> (daraus folgt ja die Rektifizierbarkeit)? Es ist ja
> [mm]\lim_{t\to0}\frac{\gamma(t)-\gamma(0)}{t-0}=\lim_{t\to0}\frac{t^2\sin(\pi/t)-0}{t-0}=\lim_{t\to0}t\sin(\pi/t)=0.[/mm]

Du hast nur gezeigt, dass [mm] \gamma [/mm] in t=0 differenzierbar ist. Berechne mal [mm] \gamma'(t) [/mm] für t [mm] \in [/mm] (0,1] und schau Dir die Folge [mm] (\gamma'(1/n)) [/mm] an. Dann wirst Du sehen: [mm] \gamma' [/mm] ist in 0 nicht stetig !

FRED

>  
> Gruß,
>  pyw


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]