matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Rekonstruktion Expo-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Rekonstruktion Expo-Funktion
Rekonstruktion Expo-Funktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekonstruktion Expo-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 So 16.12.2012
Autor: Chiba

Aufgabe
P( 0/4) Q (-4/1024) gegeben
Zu Berechnen sind c und a


Hallo ich habe irgendwie gar kein Plan wie das geht, bin irgendwie jetzt durcheinander gekommen, könnte mir das nochmal jemand erklären wie man die Punkte in der Form f(x) = c * [mm] a^x [/mm] wiedergeben kann?
Danke!!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rekonstruktion Expo-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 So 16.12.2012
Autor: chrisno


> P( 0/4) Q (-4/1024) gegeben

was ist x und was ist f(x) bei P?
was ist x und was ist f(x) bei Q?
Du musst also nur die beiden Zahlen zwischen den Klammern richtig einsortieren.
Merkregel: erst hin zum Berg, dann rauf auf den Berg
also: zuerst steht, bis wo man auf der x-Asche langgehen muss und als zweites, wie weit man dann noch oben gehen muss.
Für P: x = ..... f(x) = ....
Für Q: x = ..... f(x) = ....

Bezug
                
Bezug
Rekonstruktion Expo-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 16.12.2012
Autor: Chiba

Das kriege ich noch hin:
4=c * [mm] a^0 [/mm]
c=4

dann in die zweite gleichung einsetzen
1024=4 * a^-4
Hier hänge ich, was mache ich mit dem negativen Exponenten, dadurch bin ich ein bisschen verwirrt.> > P( 0/4) Q (-4/1024) gegeben



Bezug
                        
Bezug
Rekonstruktion Expo-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 So 16.12.2012
Autor: reverend

Hallo Chiba,

na, wird doch. ;-)

> Das kriege ich noch hin:
> 4=c * [mm]a^0[/mm]
>  c=4

Wunderbar. Da ist P doch ein praktischer Punkt...

> dann in die zweite gleichung einsetzen
>  1024=4 * a^-4
>  Hier hänge ich, was mache ich mit dem negativen
> Exponenten, dadurch bin ich ein bisschen verwirrt.> > P(
> 0/4) Q (-4/1024) gegeben

Diese Gleichung ist aber gut nach a aufzulösen. Erstmal kann man ja alles durch 4 teilen. Dann hat man

[mm] 256=a^{-4} [/mm] (nebenbei: Exponenten mit mehr als einem Zeichen müssen in geschweifte Klammern)

Jetzt muss man noch wissen, was es mit den negativen Exponenten auf sich hat. Das solltest Du in der Potenzrechnung (also nicht Exponentialrechnung!) gelernt haben, egal mit welchen Formelbuchstaben:

[mm] z^{-k}=\bruch{1}{z^k} [/mm]

Um nach a aufzulösen, wirst Du nun noch eine Wurzel ziehen müssen. Die Lösung ist ziemlich "glatt".

Grüße
reverend


Bezug
                                
Bezug
Rekonstruktion Expo-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:56 So 16.12.2012
Autor: Chiba

Danke vielmals, das mit der Potenzregel wusste ich, war aber doch ein bisschen irritiert.
Jetzt habe ich es kapiert, danke nochmal :)!

Bezug
        
Bezug
Rekonstruktion Expo-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 So 16.12.2012
Autor: Oscity

Hallo,

P( 0/4) Q (-4/1024) gegeben
Zu Berechnen sind c und a

Funktion sieht folgendermassen aus: F[x] = c * [mm] a^{x} [/mm]

Ich würde wie folgt vorgehen:

Da P ( 0 | 4 ) auf den Punkt referiert, der bei x=0 den wert F[0] = 4 annimmt.

Rechne F[0] = c * [mm] a^{0} [/mm] = c * 1 = 4 ==> c = 4

Und nun ist noch Q = (-4 | 1024) gegeben, also

F[-4] = c * [mm] a^{-4} [/mm] = 4 * [mm] a^{-4} [/mm] = 1024

--> [mm] a^{-4} [/mm] = 1024 / 4 = 256
--> 1 / [mm] (a^{4}) [/mm] = 256      | 4. Wurzel daraus ziehen
--> 1 / a = [mm] \pm4 [/mm]
==> a = [mm] \pm [/mm] 1/4            // ( und noch 2 Loesungen in [mm] \IC [/mm] )

Überprüfen:
F[0] = 4 * [mm] (1/4)^{0} [/mm] = 4            OK
F[0] = 4 * [mm] (-1/4)^{0} [/mm] = 4           OK
F[-4] = 4 * [mm] (1/4)^{-4} [/mm] = 1024       OK
F[-4] = 4 * [mm] (-1/4)^{-4} [/mm] = 1024      OK

Hoffe das hat dir geholfen. Sonst denke einfach an folgendes:

Die Punkte P und Q sind in der XY-Ebene (bzw. X und F[x] Ebene) und
haben folgende Form: P = ( [mm] x_{1} [/mm] | [mm] F[x_{1}] [/mm] ), Q = ( [mm] x_{2} [/mm] | [mm] F[x_{2}] [/mm] )

Durch Einsetzen in die vorgegeben Funktion, kann man ein lineares Gleichungssystem aufstellen und loesen:
[mm] \vmat{ Funktion[x_{2}] = Funktionswert[x_{2}] \\ Funktion[x_{1}] = Funktionswert[x_{1}] } [/mm]
bzw. da das doof aussieht, gleich für dein Beispiel:

[mm] \vmat{ c * a^{0} = 4 \\ c * a^{-4} = 1024 } [/mm]



Falls ich deine Frage falsch verstanden habe, dann liegt es wohl daran dass mein Hirn bereits aus ist... haha :D


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]