Rek. Folge mit Gaußklammern < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 19:17 Di 03.11.2009 | Autor: | Plapper |
Aufgabe | Sei [mm] \Phi:[0,1[ \to \{0,1\}^\IN, [/mm] x [mm] \mapsto \Phi(x) [/mm] = [mm] (x_n)_{n\ge 1} [/mm] definiert durch [mm] x_1 [/mm] = [2x]
[mm] x_{n+1} [/mm] = [ [mm] 2^{n+1}(x-\summe_{k=1}^{n} \bruch{x_k}{2^k})].
[/mm]
Hierbei ist [x]=sup{n [mm] \in \IN: n\le [/mm] x} die Gaußklammer von x.
1) Man rechne [mm] \Phi(x) [/mm] aus für x=0,25 und x=0,125.
2) Zeigen Sie, dass [mm] x=\summe_{k=1}^{\infty} x_k 2^{-k}. [/mm] Wieso folgt daraus, dass [mm] \Phi [/mm] injektiv ist?
3) Ist [mm] \Phi [/mm] surjektiv?
4) Sei [mm] A_n =\{x:x_n=1\}. [/mm] Man stelle [mm] A_n [/mm] graphisch dar für n=1,2,3.
Zeigen Sie, dass für alle Teilmengen [mm] \{n_1,...,n_k\} \subset\IN [/mm] und für alle [mm] k\in \IN [/mm] die Menge [mm] A_{n_1} \bigcap [/mm] ... [mm] \bigcap A_{n_k} [/mm] in [mm] \mathcal{B} (\IR) [/mm] liegt. |
Hallo...
Puh, ein ganz schöner Brocken.
Zur 1)
Wir haben für das x natürlich die Zahlen eingesetzt. Erstmal zu x=0,25. Dann haben wir [mm] x_1 [/mm] ausgerechnet:
[mm] x_1=[2x]=[2*0,25]=[0,5]=0 [/mm]
Und dann das gleiche für [mm] x_2 [/mm] und [mm] x_3. [/mm] Für [mm] x_2 [/mm] haben wir 1 erhalten, für [mm] x_3 [/mm] dann wieder 0 und für alle folgenden auch 0. Nun haben wir mit Induktion gezeigt, dass für alle n>1 [mm] x_{n+1}=0 [/mm] ist.
Also für n=2 haben wir es berechnet und es stimmt: [mm] x_3 [/mm] =0
Nun für n+1: [mm] x_{(n+1)+1)}=[2^{(n+1)}+1(0,25-\summe_{k=1}^{n+1} \bruch{x_k}{2^k}]
[/mm]
Dann haben wir die Summe hinten ausgeschrieben. Es sind alle Brüche 0 bis auf den Bruch [mm] \bruch{x_2}{2^2}, [/mm] weil der [mm] \bruch{1}{4} [/mm] ergibt. Damit ist aber die ganze hintere Klammer 0 und somit das gesamte [mm] x_{(n+1)+1}. [/mm] Und damit würde die Behauptung folgen.
Genau das gleiche haben wir für x=0,125 gemacht.
Ist es denn richtig, dass wir das für die ersten n gemacht haben und dann per Induktion oder haben wir die Aufgabe falsch verstanden?
zu 2)
Also eben weil das x im Nenner immer eine Zweierpotenz hat, wird das in 1) immer 0. Oder?
Muss man das x in die rekursive Ausgangsformel einsetzen?
Bei Injektivität müssen wir zeigen, dass aus [mm] \Phi(x_l) [/mm] = [mm] \Phi(x_m) [/mm] folgt [mm] x_l [/mm] = [mm] x_m.
[/mm]
Aber wir wissen nicht, wie wir das auf die Aufgabe anwenden können.
Zu 3)
Wir sind der Meinung, es ist surjektiv, allerdings können wir es nur schwer begründen. Es folgt doch eigentlich aus 1), dass [mm] \Phi [/mm] surjektiv ist!?
Zu 4)
Wir haben für [mm] A_1=\{x:x_1 =1\}. [/mm] Das heißt, wir müssen untersuchen, wann [mm] x_1=[2x]=1 [/mm] ist. Das ist für [mm] \bruch{1}{2}\le [/mm] x < 1 der Fall. Das war nicht das Problem.
Für [mm] A_2=\{x:x_2=1\}. [/mm] Unser [mm] x_2 [/mm] sieht wie folt aus: [mm] x_2=[4x-2[2x]]. [/mm]
Setze also [4x-2[2x]]=1.
Weil [] ja die Gaußklammer ist, kann man auch schreiben [mm] 4x-2[2x]\ge [/mm] 1. Allerdings müssten wir auch nach der anderen Seite noch abgrenzen. Wie, ist uns allerdings noch ein Rätsel...:-(
Kann sich uns einer annehmen und mal über die Aufgabe schauen?
Vielen Dank und liebe Grüße Plapper
PS.: Ich habe diese Frage auf keine weiteren Internetseiten oder in andere Foren gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Fr 06.11.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|