matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihenwert ausrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Reihenwert ausrechnen
Reihenwert ausrechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenwert ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Mi 01.07.2015
Autor: UniversellesObjekt

Aufgabe
Berechne die Reihe [mm] $\sum_{k\not=j}\dfrac{1}{j^2-k^2}$. [/mm]

Hallo,

Per Wolfram Alpha habe ich herausgefunden, dass der Wert [mm] $\dfrac{1}{(2j)^2}$ [/mm] ist, außer für $j=0$. Dass die Reihe konvergiert ist leicht einzusehen, durch einen Vergleich mit [mm] $\sum\dfrac{1}/k^2$ [/mm] beziehungsweise [mm] $\sum\dfrac{1}{k(k+1)}$, [/mm] von deren Konvergenz man sich leicht überzeugt.

Mit der Berechnung des Wertes komme ich aber schlecht voran. Schon für $j=1$ bekomme ich es nicht hin, zu sehen, dass [mm] $\sum_{k=2}^\infty \dfrac{1}{1-k^2}=-\dfrac{3}{4}$. [/mm] Der allgemeine Fall läuft nicht besser. Könnt ihr helfen?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Reihenwert ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Mi 01.07.2015
Autor: fred97


> Berechne die Reihe [mm]\sum_{k\not=j}\dfrac{1}{j^2-k^2}[/mm].
>  Hallo,
>  
> Per Wolfram Alpha habe ich herausgefunden, dass der Wert
> [mm]\dfrac{1}{(2j)^2}[/mm] ist, außer für [mm]j=0[/mm]. Dass die Reihe
> konvergiert ist leicht einzusehen, durch einen Vergleich
> mit [mm]\sum\dfrac{1}/k^2[/mm] beziehungsweise
> [mm]\sum\dfrac{1}{k(k+1)}[/mm], von deren Konvergenz man sich leicht
> überzeugt.
>  
> Mit der Berechnung des Wertes komme ich aber schlecht
> voran. Schon für [mm]j=1[/mm] bekomme ich es nicht hin, zu sehen,
> dass [mm]\sum_{k=2}^\infty \dfrac{1}{1-k^2}=-\dfrac{3}{4}[/mm]. Der
> allgemeine Fall läuft nicht besser. Könnt ihr helfen?
>  
> Liebe Grüße,
>  UniversellesObjekt


Zauberwort: Partialbruchzerlegung !

Machen wir zuerst den Fall j=1:

Es ist  [mm] \dfrac{1}{1-k^2}= \dfrac{1}{2}*( \dfrac{1}{1-k}+ \dfrac{1}{1+k}) [/mm]

Nun erinnern wir uns an:

   $ [mm] \sum_{k=2}^\infty \dfrac{1}{1-k^2}:=\limes_{n\rightarrow\infty} \sum_{k=2}^n \dfrac{1}{1-k^2}$ [/mm]

und setzen daher:

   [mm] S_n:=\sum_{k=2}^n \dfrac{1}{1-k^2} [/mm]  für n [mm] \ge [/mm] 2.

[mm] S_n [/mm] ist eine Teleskopsumme ! Rechne mal aus: [mm] S_3,S_4,.., [/mm] dann solltest Du sehen, dass der Hase dahin läuft:

    [mm] $S_n=\dfrac{1}{2}*(- \dfrac{3}{2}+\dfrac{1}{n+1})$. [/mm]

Streng beweisen kannst Du das mit Induktion nach n.

Jetzt sehen wir: [mm] $S_n \to -\dfrac{3}{4}$ [/mm]  für $n [mm] \to \infty.$ [/mm]


Nun zum allg. Fall:

zeige:

     [mm] \dfrac{1}{j^2-k^2}=\dfrac{1}{2j}*(\dfrac{1}{j-k}+\dfrac{1}{j+k}). [/mm]

Setze $  [mm] S_n:=\sum_{k=1, k \ne j}^n\dfrac{1}{j^2-k^2} [/mm] $  für n>j

und versuche, ähnlich wie im ersten Fall, eine geschlossen Formel für [mm] S_n [/mm] zu finden.

FRED

Bezug
                
Bezug
Reihenwert ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mi 01.07.2015
Autor: UniversellesObjekt

Vielen Dank, Fred, ich habe es hinbekommen.

Gibt es eigentlich eine Möglichkeit, solche Partialbruchzerlegungen "mechanisch" auszurechnen? Oder muss man sie "sehen"?

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Reihenwert ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mi 01.07.2015
Autor: fred97


> Vielen Dank, Fred, ich habe es hinbekommen.
>  
> Gibt es eigentlich eine Möglichkeit, solche
> Partialbruchzerlegungen "mechanisch" auszurechnen? Oder
> muss man sie "sehen"?

Nein, sehen muss man das nicht. In den meisten Fällen ist das auch nicht möglich.

Beispiel:

Ansatz (hierbei ist j fest und k variabel): Klar: [mm] j^2-k^2=(j-k)(j+k) [/mm]

     $ [mm] \dfrac{1}{j^2-k^2}=\dfrac{A}{j-k}+\dfrac{B}{j+k} [/mm] $

Es folgt: $1=A(j+k)+B(j-k)=j(A+B)+k(A-B)$  für alle k.

Koeffizientevergleich liefert:

   1=j(A+B) und 0=A-B.

Also: [mm] A=B=\bruch{1}{2j}. [/mm]


Schau da mal rein:

https://www2.math.ethz.ch/education/bachelor/lectures/hs2014/other/analysis1_MAVT_MATL/index/edit/Partialbruchzerlegung.pdf

FRED


>  
> Liebe Grüße,
>  UniversellesObjekt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]