matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesReihenwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Reihenwert
Reihenwert < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Di 10.07.2012
Autor: BlackBalloon

Aufgabe
Berechnen Sie den Reihenwert für x=0 für die Reihe [mm] \summe_{k=2}^{\infty}\bruch{1}{64^{k}}*(2x-1)^{3k} [/mm]

Konvergenzintervall [mm] (-\bruch{3}{2},\bruch{5}{2}) [/mm]

Hallo,

Reihen sind nicht so meine Stärken und brauche dringend eure Hilfe, da ich morgen eine Klausur schreibe.

Also x=0 setzen klappt noch:

[mm] \summe_{k=2}^{\infty}\bruch{1}{64^{k}}*(-1)^{3k} [/mm]

[mm] \summe_{k=2}^{\infty}\bruch{1}{64^{k}}*(-1)^{k} [/mm]

Die 3 in dem Term  [mm] (-1)^{3k} [/mm]  müsste ich eigentlich weg lassen können, da es ja noch nicht mal Auswirkungen auf das Vorzeichen hat. Ich sehe wohl auch noch, dass es eine alternierende Reihe ist. Aber wie ich jetzt weiter vorgehen muss um an den Wert der Reihe zu kommen, weiß ich leider nicht.

Wäre super, wenn mir jemand einen Tipp geben könnte.

Liebe Grüße

blackballoon


        
Bezug
Reihenwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Di 10.07.2012
Autor: fred97


> Berechnen Sie den Reihenwert für x=0 für die Reihe
> [mm]\summe_{k=2}^{\infty}\bruch{1}{64^{k}}*(2x-1)^{3k}[/mm]
>  
> Konvergenzintervall [mm](-\bruch{3}{2},\bruch{5}{2})[/mm]
>  Hallo,
>  
> Reihen sind nicht so meine Stärken und brauche dringend
> eure Hilfe, da ich morgen eine Klausur schreibe.
>  
> Also x=0 setzen klappt noch:
>  
> [mm]\summe_{k=2}^{\infty}\bruch{1}{64^{k}}*(-1)^{3k}[/mm]
>
> [mm]\summe_{k=2}^{\infty}\bruch{1}{64^{k}}*(-1)^{k}[/mm]
>
> Die 3 in dem Term  [mm](-1)^{3k}[/mm]  müsste ich eigentlich weg
> lassen können, da es ja noch nicht mal Auswirkungen auf
> das Vorzeichen hat. Ich sehe wohl auch noch, dass es eine
> alternierende Reihe ist. Aber wie ich jetzt weiter vorgehen
> muss um an den Wert der Reihe zu kommen, weiß ich leider
> nicht.
>  
> Wäre super, wenn mir jemand einen Tipp geben könnte.

[mm] \summe_{k=2}^{\infty}\bruch{1}{64^{k}}\cdot{}(-1)^{k} [/mm] = [mm] \summe_{k=2}^{\infty}(\bruch{-1}{64})^k [/mm]

Jetzt geometrische Reihe und beachte , dass oben die Summiererei erst bei k=2 losgeht.

FRED

>
> Liebe Grüße
>  
> blackballoon
>  


Bezug
        
Bezug
Reihenwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:38 Di 10.07.2012
Autor: BlackBalloon

Das habe ich gar nicht gesehen, dass ich das hätte so zusammenfassen können.

Für eine geometrische Reihe ist der Reihenwert wie folgt bestimmt:
[mm] \bruch{1}{1-q} [/mm] wobei ich dann noch den Wert für k=0 und k=1 abziehen muss und dann komme ich auch auf das vorgesehene Ergebnis.

Manchmal denkt man auch zu kompliziert.

Vielen Dank für die schnelle Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]