matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikReihenschwingkreis RLC bestimm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Elektrotechnik" - Reihenschwingkreis RLC bestimm
Reihenschwingkreis RLC bestimm < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenschwingkreis RLC bestimm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Mi 07.05.2008
Autor: diadevil

Aufgabe
Bestimme R L C an einem Reiheneschwingkreis der mit Wechselspannung betrieben wird.

Ich habe einen Reihenschwingkreis, bestehend aus R L und C an Wechselspannung (hab die Möglichkeit, reine 50Hz Spg zu nutzen oder auch Oberschwingungen mit hinein zu addieren). Bekannt sind die Eingangsspannung und der Strom. Auch bekannt sind
[mm] \bruch{\Delta i(t)}{\Delta t} [/mm]  

[mm] \bruch{\Delta u(t)}{\Delta t} [/mm]

[mm] \Delta [/mm] t
und der Spitzenstrom so wie die Spitzenspannung zu jedem beliebigen Zeitpunkt.

Meine idee war es nun die DGL aufzustellen und eine Matrix zu erstellen, in dem ich mehrere Zeitpkt betracht und so mein R L C erhalte. Problem ist nur, das sich eine DGL 2ter Ordnung etrgibt:
[mm] \bruch{\Delta^{2}i(t)}{\Delta t^{2}}+\bruch{R}{L}*\bruch{\Delta i(t)}{\Delta t}+\bruch{i(t)}{C*R}=\bruch{1}{R}*\bruch{\Delta u(t)}{\Delta t} [/mm]
Meine versuche, dies Umzuformen sind bislang gescheitert. Meine Frage nun, gibt es jemanden der mir bei diesem Problem weiter helfen kann, vielleicht ein ganz anderer Lösungsansatz oder Tipps für die Umformung.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihenschwingkreis RLC bestimm: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Do 08.05.2008
Autor: leduart

Hallo
Die Lösung dieser Dgl. findest du an vielen Stellen ausführlich beschrieben. es handelt sich um einen "angeregten" Schwingkreis.
z.Bsp…[]hier
wenn du was nicht verstehst, frag nach.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]