matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisReihenkonvergenz & Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Reihenkonvergenz & Menge
Reihenkonvergenz & Menge < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonvergenz & Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Do 05.07.2012
Autor: Der-Madde-Freund

Hi,

ich hätte zwei Aufgaben bei denne ich Hilfe brauche:

1) Untersuche auf absolute Konvergenz:

[mm] \summe_{k=0}^{\infty}\frac{log(z)^{2k+1}}{(2k+1)!}, z\in \IC [/mm]

Hier weiss ich nicht, wie ich das zeigen soll... welches Kriterium muss ich denn verwenden?

-----------------------------------------------


2) Skizziere in der Gaußschen Zahlenebene:
log(z) [mm] \in [/mm] i[0; [mm] \pi/2] [/mm]

Auch hier habe ich keine Ahnung, wie ich vorgehen soll, vllt. z=x+iy umschreiben?

        
Bezug
Reihenkonvergenz & Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 06:57 Fr 06.07.2012
Autor: fred97


> Hi,
>  
> ich hätte zwei Aufgaben bei denne ich Hilfe brauche:
>  
> 1) Untersuche auf absolute Konvergenz:
>  
> [mm]\summe_{k=0}^{\infty}\frac{log(z)^{2k+1}}{(2k+1)!}, z\in \IC[/mm]
>  
> Hier weiss ich nicht, wie ich das zeigen soll... welches
> Kriterium muss ich denn verwenden?

Für welche w [mm] \in \IC [/mm] konv. die Potenzreihe

[mm][mm] \summe_{k=0}^{\infty}\frac{w^{2k+1}}{(2k+1)!} [/mm]

absolut ?

FRED

>  
> -----------------------------------------------
>  
>
> 2) Skizziere in der Gaußschen Zahlenebene:
>  log(z) [mm]\in[/mm] i[0; [mm]\pi/2][/mm]
>  
> Auch hier habe ich keine Ahnung, wie ich vorgehen soll,
> vllt. z=x+iy umschreiben?


Bezug
                
Bezug
Reihenkonvergenz & Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Fr 06.07.2012
Autor: Der-Madde-Freund


> Für welche w [mm]\in \IC[/mm] konv. die Potenzreihe
>  
> [mm][mm]\summe_{k=0}^{\infty}\frac{w^{2k+1}}{(2k+1)!}[/mm]

absolut ?


Hm, diese Reihe könnte ich ja auch als sinh(w) umschreiben, kann ich dann sagen, dass sie deshalb auch konvergent ist?

Bezug
                        
Bezug
Reihenkonvergenz & Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Fr 06.07.2012
Autor: Marcel

Hallo,

>
> > Für welche w [mm]\in \IC[/mm] konv. die Potenzreihe
>  >  
> > [mm][mm]\summe_{k=0}^{\infty}\frac{w^{2k+1}}{(2k+1)!}[/mm]

  

> > absolut ?


> Hm, diese Reihe könnte ich ja auch als sinh(w) umschreiben, kann ich
> dann sagen, dass sie deshalb auch konvergent ist?

ja, das geht auch. Aber ich geb' Dir mal den Wink mit dem Zaunpfahl:
[mm] $$\sum_{k=0}^\infty \left|\frac{w^{2k+1}}{(2k+1)!}\right|=\sum_{k=0}^\infty \frac{|w|^{2k+1}}{(2k+1)!} \le \sum_{\ell=0}^\infty \frac{|w|^\ell}{\ell!}=e^{|w|}\,.$$ [/mm]

Und warum ist das DER Wink mit dem Zaunpfahl? Naja, wenn man diese Abschätzung sieht, hätte man doch direkt auch auf die Idee kommen können, dass man die Konvergenzuntersuchung der Reihe [mm] $\sum_{k=0}^\infty \frac{w^{2k+1}}{(2k+1)!}$ [/mm] genau so machen kann, wie man es bei der mit der Exponentialreihe macht:
Das Quotientenkriterium führt zum Ziel [mm] ($|w|^{2n+1}/((2n+1)!)*(2n-1)!/|w|^{2n-1}=... \to [/mm] 0$ bei $n [mm] \to \infty\,,$ [/mm] $w [mm] \in \IC$ [/mm] bel., aber fest)!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]