matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihenkonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Reihenkonvergenz
Reihenkonvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonvergenz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:40 Sa 03.12.2011
Autor: KaJaTa

Aufgabe
Welche der folgenden Reihen konvergieren, welche divergieren, welche konvergieren absolut?
Beweisen Sie Ihre Behauptungen.

Guten Abend :)

Ich bin mir hier bei dieser Reihe unsicher:

[mm] \summe_{n=1}^{\infty} \bruch{cos(n^{n})}{n^{\bruch{5}{4}}} [/mm]

Da der Kosinus ja nur Werte zwischen ]-1,1[ annehmen kann und der Nenner immer größer wird, müsste doch diese Reihe gegen 0 konvergieren? Zählt das als Begründung? Ich wüsste auch nicht mit welchem Kriterium ich das beweisen sollte.

Oder liege ich komplett falsch?

Danke

        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Sa 03.12.2011
Autor: schachuzipus

Hallo KaJaTa,


> Welche der folgenden Reihen konvergieren, welche
> divergieren, welche konvergieren absolut?
>  Beweisen Sie Ihre Behauptungen.
>  Guten Abend :)
>  
> Ich bin mir hier bei dieser Reihe unsicher:
>
> [mm]\summe_{n=1}^{\infty} \bruch{cos(n^{n})}{n^{\bruch{5}{4}}}[/mm]
>  
> Da der Kosinus ja nur Werte zwischen ]-1,1[ annehmen kann

[mm] $\pm [/mm] 1$ nicht?

> und der Nenner immer größer wird, müsste doch diese
> Reihe gegen 0 konvergieren? Zählt das als Begründung?

Das stimmt wohl und ist auch notwendig für Reihenkonvergenz, aber das reicht nicht, wie die harmonische Reihe zeigt.

> Ich wüsste auch nicht mit welchem Kriterium ich das beweisen
> sollte.

Die Reihen des Typs [mm] $\sum_n\frac{1}{n^s}$ [/mm] sind für $s>1$ konvergent und für [mm] $s\le [/mm] 1$ divergent.

Prüfe deine Reihe auf absolute Konvergenz und nutze dabei das Majorantenkrit.

>  
> Oder liege ich komplett falsch?
>  
> Danke

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]