matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihenkonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Reihenkonvergenz
Reihenkonvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 18.04.2007
Autor: Zerwas

Aufgabe
Untersuche folgende Reihen auf Konvergenz und berechne ggf. ihre Grenzwerte:

(i) [mm] \summe_{n=1}^{\infty}1/2n-1 [/mm]

(ii) [mm] \summe_{n=0}^{\infty}(-1)^n/3^n [/mm]

(iii) [mm] \summe_{n=1}^{\infty}2^nn!/1*3*5*...*(2n-1) [/mm]

(iv) [mm] \summe_{n=3}^{\infty}(23)^-^n [/mm]

(i) keine Ahnung wie ansetzen

(ii) Wurzelkriterium:
[mm] \wurzel[n]{a_n} [/mm] = [mm] \wurzel[n]{(-1)^n/3^n} [/mm] = (-1)/3
Also konvergiert die Folge gegen -1/3

(iii)Ich habe das Quotientenkriterium angewandtund habe dann:
[mm] a_n_+_1/a_n [/mm] = [mm] [2^n^+^1(n+1)!/1*3*5*...*(2n-1)(2n+1)]/[2^nn!/1*3*5*...*(2n-1)] [/mm]
das kann ich dann kürzen und bekomme:
[2(n+1)]/(2n+1)] = [1+1/n]/[1+1/2n] => der term ist immer größer als 1 und damit konvergiert die Reihe nicht.

(iv) Hier würde ich wieder das Wurzelkriterium verwenden:
[mm] \wurzel[n]{a_n} [/mm] = [mm] \wurzel[n]{23^-^n} [/mm] = 1/23



Habe ich richtig gedacht? und wie setzte ich bei der (i) an?

ICh habe diese Frage in keinem andern Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihenkonvergenz: reihen
Status: (Antwort) fertig Status 
Datum: 20:19 Mi 18.04.2007
Autor: deepblue85

hi!

also nr. 1 divergiert!
das ist etwas komplizierter zu zeigen.
dazu musst du teilfolgen der partialsummen nehmen.
willst du es genau sehen oder selbst probieren?

zu nr. 2: es ist die geometrische reihe versteckt!

zu nr 3: muss ich überlegen, sieht aber bei dir nicht schlecht aus

zu nr 4: wie 2tens

vg
micha

Bezug
                
Bezug
Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Mi 18.04.2007
Autor: Zerwas

Danke erstmal für die Hilfe.

Erstmal zu (ii):
d.h. ich kann die Reihe auch schreiben als:
[mm] \summe_{n=1}^{\infty}(-1)^n*(1/3)^n [/mm] und diese Reihe konvergiert falls 1/3 <1 was ja gegeben ist. Korrekt?
der Grenzwert beträgt dann: (-1)*1/[1-1/3]= [mm] (-1)\[2/3] [/mm] = -3/2  Richtig?

Dann zu (iii):
Wieder geometrische Reihe also:
[mm] \summe_{n=1}^{\infty}1*(1/23)^n [/mm] wieder Konvergenz da 1/23 <1 und zwar gegen 1*1/[1-1/23] = 1/(-22/23) = -23/22. Richtig.

Zu (i) hab ich leider keine Ahnung wie es geht und wäre dankbar wenn du es mir zeigen könntest.

Gruß Zerwas

Bezug
                        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Mi 18.04.2007
Autor: schachuzipus

Hallo Zerwas,


> Danke erstmal für die Hilfe.
>  
> Erstmal zu (ii):
>  d.h. ich kann die Reihe auch schreiben als:
>  [mm]\summe_{n=1}^{\infty}(-1)^n*(1/3)^n[/mm] [ok] und diese Reihe
> konvergiert falls 1/3 <1 was ja gegeben ist. Korrekt?
>  der Grenzwert beträgt dann: (-1)*1/[1-1/3]= [mm](-1)\[2/3][/mm] =
> -3/2  Richtig?

Was ist denn das fürn Kriterium? Du hast doch hier ne alternierende Reihe, da schau mal, ob du nicht besser das Leibnizkriterium anwendest ;-)

> Dann zu (iii):  oder (iv) ;-)
>  Wieder geometrische Reihe also:
>  [mm]\summe_{n=1}^{\infty}1*(1/23)^n[/mm] wieder Konvergenz da 1/23
> <1 [ok] und zwar gegen 1*1/[1-1/23] = 1/(-22/23) = -23/22.
> Richtig. [kopfkratz3] [mm] \frac{1}{1-\frac{1}{23}}=\frac{1}{\frac{22}{23}}=\frac{23}{22} [/mm]

Aber nur, wenn die Reihe bei k=0 lösläuft!! In der Aufgabe löppt die erst bei k=3 an, also musste vom GW die ersten 3 Summanden (für k=0,1,2) noch abziehen.

>  
> Zu (i) hab ich leider keine Ahnung wie es geht und wäre
> dankbar wenn du es mir zeigen könntest.


Schätze dei Reihe in (i) gegen die harmonische Reihe [mm] \sum\frac{1}{n} [/mm] ab

> Gruß Zerwas


Selber Gruß ;-)

schachuzipus

Bezug
                                
Bezug
Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Mi 18.04.2007
Autor: Zerwas

oopps .. is schon spät ^^

aaallsooo:

$ [mm] \summe_{n=1}^{\infty}(-1)^n\cdot{}(\frac{1}{3})^n [/mm] $ betrachtet mit dem leibnitzkriterium => konvergiert wenn [mm] (1/3)^n [/mm] gg. 0 strebt was gegeben ist

dann:

$ [mm] \summe_{n=3}^{\infty}1\cdot{}\frac{1}{23}^n [/mm] $ kay da hab ich gepennt ;)
also grenzwert ist: [mm] \frac{23}{22}-(\frac{23}{22})^0-(\frac{23}{22})^1-(\frac{23}{22})^2=\frac{23}{22}-1-(\frac{23}{22})-(\frac{529}{484}) [/mm] = [mm] (-\frac{1013}{484}) [/mm] Stimmt das jetzt?

Wie funtz das mit dem Abschätzen? :-[

Danke und fg Zerwas

Bezug
                                        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:49 Mi 18.04.2007
Autor: schachuzipus

Hoi,

uffpasse!!


>  
> [mm]\summe_{n=1}^{\infty}(-1)^n\cdot{}(\frac{1}{3})^n[/mm]
> betrachtet mit dem leibnitzkriterium => konvergiert wenn
> [mm](1/3)^n[/mm] gg. 0 strebt was gegeben ist

Lies das Leibnizkriterium nochmal genau nach! Die Reihe konvergiert, wenn
(1) alle [mm] a_k>0 [/mm] sind

(2) [mm] (a_n)_n [/mm] eine monoton fallende (!!) Nullfolge bildet!!

Zum Glück ist das hier der Fall ;-)

> [mm]\summe_{n=3}^{\infty}1\cdot{}\frac{1}{23}^n[/mm] kay da hab ich
> gepennt ;)
> also grenzwert ist:
> [mm]\frac{23}{22}-(\frac{23}{22})^0-(\frac{23}{22})^1-(\frac{23}{22})^2=\frac{23}{22}-1-(\frac{23}{22})-(\frac{529}{484})[/mm]
> = [mm](-\frac{1013}{484})[/mm] Stimmt das jetzt?

huch? du musst [mm] \left(\frac{1}{23}\right)^0+\left(\frac{1}{23}\right)^1+\left(\frac{1}{23}\right)^2 [/mm] abziehen - da steht doch [mm] \frac{1}{23} [/mm] in der Reihe. Der GW kann ja auch gar nicht negativ sein, du summierst ja lauter positive Zahlen


> Wie funtz das mit dem Abschätzen? :-[

Finde nach dem Vergleichskriterium/Majorantenkriterium eine divergente Minorante, schätze also deine Reihe nach unten gegen eine divergente Reihe ab, dann ist sie als "größere" Reihe erst recht divergent:

[mm] \summe_{n=1}^{\infty}\frac{1}{2n-1}>\summe_{n=1}^{\infty}\frac{1}{2n}=\frac{1}{2}\cdot{}\summe_{n=1}^{\infty}\frac{1}{n} [/mm]

Hier hast du deine divergente Reihe mit der harmonischen Reihe


Gruß

schachuzipus

> Danke und fg Zerwas


Bezug
                                                
Bezug
Reihenkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Mi 18.04.2007
Autor: Zerwas

oh nein ... es geht bergab mit mir ^^ .... is vllt besser wenn ich jetzt pennen geh :P sonst passieren mir noch weiter so dumme fehler .... und danke für die Erklätung mit dem Abschätzen :)

Bezug
                                                        
Bezug
Reihenkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:59 Mi 18.04.2007
Autor: schachuzipus

jo, kein Thema

schlaf gut ;-)



Bezug
        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Do 19.04.2007
Autor: schachuzipus

Hallo nochmal, Zerwas,

kleine Anmerkung zu Reihe in (iii).

Da reicht deine Begründung mit dem QK nicht aus.

Du musst ja [mm] $\lim\limits_{n\rightarrow\infty}\left|\frac{a_n}{a_{n+1}\right|}$ [/mm] betrachten, und das muss ein festes $q<1$ sein.

Die Tatsache allein, dass [mm] \frac{a_n}{a_{n+1}} [/mm] stets größer als 1 ist, reicht nicht aus, für [mm] n\rightarrow\infty [/mm] geht das gegen 1.

Und für diesen Fall kann man leider keine Aussage treffen

Da musste dir noch was anderes überlegen, fürchte ich

LG

schachuzipus

Bezug
                
Bezug
Reihenkonvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Do 19.04.2007
Autor: Zerwas

aber die eins wir nie erreicht, da 2/n > 1/n ist und damit kann man d<1 derart definieren, dass d eine beliebig gering kleinere zahl als 1 ist.

Kann man so nicht argumentieren?

Bezug
                        
Bezug
Reihenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Do 19.04.2007
Autor: schachuzipus

Hallo,

ja die 1 wird zwar nie erreicht, aber [mm] \lim\limits_{n\rightarrow\infty} [/mm] ist 1

Also geht die Argumentation nicht

Schau dir nochmal genau die Def. des QK an. Da steht's leider


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]